scholarly journals Physiology Of Drowning: A Review

Physiology ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 147-166 ◽  
Author(s):  
Joost J. L. M. Bierens ◽  
Philippe Lunetta ◽  
Mike Tipton ◽  
David S. Warner

Drowning physiology relates to two different events: immersion (upper airway above water) and submersion (upper airway under water). Immersion involves integrated cardiorespiratory responses to skin and deep body temperature, including cold shock, physical incapacitation, and hypovolemia, as precursors of collapse and submersion. The physiology of submersion includes fear of drowning, diving response, autonomic conflict, upper airway reflexes, water aspiration and swallowing, emesis, and electrolyte disorders. Submersion outcome is determined by cardiac, pulmonary, and neurological injury. Knowledge of drowning physiology is scarce. Better understanding may identify methods to improve survival, particularly related to hot-water immersion, cold shock, cold-induced physical incapacitation, and fear of drowning.

1988 ◽  
Vol 65 (4) ◽  
pp. 1535-1538 ◽  
Author(s):  
T. T. Romet

It was hypothesized that if afterdrop is a purely conductive phenomenon, the afterdrop during rewarming should proceed initially at a rate equal to the rate of cooling. Eight male subjects were cooled on three occasions in 22 degrees C water and rewarmed once by each of three procedures: spontaneous shivering, inhalation of heated (45 degrees C) and humidified air, and immersion up to the neck in 40 degrees C water. Deep body temperature was recorded at three sites: esophagus, auditory canal, and rectum. During spontaneous and inhalation rewarming, there were no significant differences between the cooling (final 30 min) and afterdrop (initial 10 min) rates as calculated for each deep body temperature site, thus supporting the hypothesis. During rapid rewarming, the afterdrop rate was significantly greater than during the preceding cooling, suggesting a convective component contributing to the increased rate of fall. The rapid reversal of the afterdrop also indicates that a convective component contributes to the rewarming process as well.


2002 ◽  
Vol 16 (4) ◽  
pp. 354-357 ◽  
Author(s):  
Michiaki Yamakage ◽  
Sohshi Iwasaki ◽  
Akiyoshi Namiki

1992 ◽  
Vol 26 (3) ◽  
pp. 191-198 ◽  
Author(s):  
Kazushi Daimon ◽  
Naoto Yamada ◽  
Tetsushi Tsujimoto ◽  
Saburo Takahashi

1987 ◽  
Vol 39 (3) ◽  
pp. 367-370 ◽  
Author(s):  
Mark S. Blumberg ◽  
Julie A. Mennella ◽  
Howard Moltz

1992 ◽  
Vol 163 (1) ◽  
pp. 139-151 ◽  
Author(s):  
R. M. BEVAN ◽  
P. J. BUTLER

Six tufted ducks were trained to dive for food at summer temperatures (air, 26°C, water, 23°C) and at winter temperatures (air, 5.8°C, water 7.4°C). The mean resting oxygen consumption (Voo2) a t winter temperatures (rwin) was 90% higher than that at summer temperatures (Tsum), but deep body temperatures (Tb) were not significantly different. Diving behaviour and mean oxygen consumption for dives of mean duration were similar at Twin and at Tsum, although the mean oxygen consumption for surface intervals of mean duration was 50% greater at Twin and Tb was significantly lower (1°C) at the end of a series of dives in winter than it was in summer. There appears to be an energy saving of 67 J per dive during winter conditions and this may, at least partially, be the result of the metabolic heat produced by the active muscles being used to maintain body temperature. While at rest under winter conditions, this would be achieved by shivering thermogenesis. Thus, the energetic costs of foraging in tufted ducks in winter are not as great as might be expected from the almost doubling of metabolic rate in resting birds.


Sign in / Sign up

Export Citation Format

Share Document