Quantitative trait loci for insulin-like growth factor I, leptin, thyroxine, and corticosterone in genetically heterogeneous mice

2003 ◽  
Vol 15 (1) ◽  
pp. 44-51 ◽  
Author(s):  
James M. Harper ◽  
Andrzej T. Galecki ◽  
David T. Burke ◽  
Stephen L. Pinkosky ◽  
Richard A. Miller

Genotype information was collected at 87 loci in a group of 1,108 UM-HET3 mice bred as the progeny of [BALB/cJ × C57BL/6J]F1 mothers and [C3H/HeJ × DBA/2J]F1 fathers, for which thyroxine (T4), insulin-like growth factor I (IGF-I), and leptin levels had been measured at 4 and 15 mo of age. The data provided significant evidence for quantitative trait loci (QTL) modulating IGF-I levels on chromosomes 1, 3, 8, 10, and 17; for loci affecting T4 on chromosomes 4, 15, and 17; and for leptin on chromosome 3. Fecal levels of corticosterone at 17 mo of age were influenced by a QTL on chromosome 1. Nine other gene/hormone associations reached a nominal P < 0.01, providing suggestive but not statistical evidence for additional QTL. QTL with an influence on a given hormone were in nearly all cases additive, with little or no evidence for epistasis. Of the 12 strongest QTL, 5 had effects that were age dependent, having more effect in 15-mo-old than in 4-mo-old mice in all but one case; the other QTL had effects that were apparently age-independent. These results show that the genetic controls over late-life hormone levels are complex and dependent on effects of genes that act both early and late in the life course.

1995 ◽  
Vol 269 (5) ◽  
pp. E977-E981 ◽  
Author(s):  
C. V. Jurasinski ◽  
T. C. Vary

Sepsis causes an inhibition of protein synthesis in gastrocnemius that is resistant to the anabolic effects of insulin. The purpose of the present studies was to investigate the effect of recombinant human insulin-like growth factor I (IGF-I) on protein synthesis during a 30-min perfusion of the isolated rat hindlimb from septic rats. Inclusion of IGF-I (1 or 10 nM) in the perfusate stimulated protein synthesis in gastrocnemius of septic rats 2.5-fold and restored rates of protein synthesis to those observed in control rats. The stimulation of protein synthesis did not result from an increase in the RNA content but was correlated with a 2.5-fold increase in the translational efficiency. The enhanced translational efficiency was accompanied by a 33 and 55% decrease in the abundance of free 40S and 60S ribosomal subunits, respectively, indicating that IGF-I accelerated peptide-chain initiation relative to elongation/termination. These studies provide evidence that IGF-I can accelerate protein synthesis in gastrocnemius during chronic sepsis by reversing the sepsis-induced inhibition of peptide-chain initiation.


Sign in / Sign up

Export Citation Format

Share Document