Ex Uno Plures: Molecular Designs for Embryonic Pluripotency

2015 ◽  
Vol 95 (1) ◽  
pp. 245-295 ◽  
Author(s):  
Kyle M. Loh ◽  
Bing Lim ◽  
Lay Teng Ang

Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.

2015 ◽  
Vol 6 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Kazuyuki Ohbo ◽  
Shin-ichi Tomizawa

AbstractStem cells are identified classically by an in vivo transplantation assay plus additional characterization, such as marker analysis, linage-tracing and in vitro/ex vivo differentiation assays. Stem cell lines have been derived, in vitro, from adult tissues, the inner cell mass (ICM), epiblast, and male germ stem cells, providing intriguing insight into stem cell biology, plasticity, heterogeneity, metastable state, and the pivotal point at which stem cells irreversibly differentiate to non-stem cells. During the past decade, strategies for manipulating cell fate have revolutionized our understanding about the basic concept of cell differentiation: stem cell lines can be established by introducing transcription factors, as with the case for iPSCs, revealing some of the molecular interplay of key factors during the course of phenotypic changes. In addition to de-differentiation approaches for establishing stem cells, another method has been developed whereby induced expression of certain transcription factors and/or micro RNAs artificially converts differentiated cells from one committed lineage to another; notably, these cells need not transit through a stem/progenitor state. The molecular cues guiding such cell fate conversion and reprogramming remain largely unknown. As differentiation and de-differentiation are directly linked to epigenetic changes, we overview cell fate decisions, and associated gene and epigenetic regulations.


2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
J. K. Park ◽  
H. S. Kim ◽  
K. J. Uh ◽  
K. H. Choi ◽  
H. M. Kim ◽  
...  

Since pluripotent cells were first derived from the inner cell mass (ICM) of mouse blastocysts, tremendous efforts have been made to establish embryonic stem cell (ESC) lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to derive pluripotent cells of naïve state that represents full pluripotency, due to the frequent occurrence of spontaneous differentiation into an EpiSC-like state during culture in pigs. We have been able to derive EpiSC-like porcine embryonic stem cell (pESC) lines of a differentiated non-ES cell state from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) into porcine fibroblast cells. In this study, we analysed characteristics such as marker expression, pluripotency and the X chromosome inactivation (XCI) status of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1-60 and TRA 1-81. Furthermore all of these cell lines showed in vitro differentiation potential; female XCI activity and a normal karyotype. Here we provide preliminary results that suggest that, as a nonpermissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. This work was supported by the BioGreen 21 Program (#20070401034031, PJ0081382011), Rural Development Administration, Republic of Korea.


2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 203-203
Author(s):  
Margaret R. Hough ◽  
Andrea K. Vaags ◽  
Anderson Goncalves ◽  
Cathy J. Gartley ◽  
Yanzhen Zheng ◽  
...  

Stem Cells ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 329-340 ◽  
Author(s):  
Andrea K. Vaags ◽  
Suzana Rosic-Kablar ◽  
Cathy J. Gartley ◽  
Yan Zhen Zheng ◽  
Alden Chesney ◽  
...  

Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 27-45
Author(s):  
Thomas C. Doetschman ◽  
Harald Eistetter ◽  
Margot Katz ◽  
Werner Schmidt ◽  
Rolf Kemler

The in vitro developmental potential of mouse blastocyst-derived embryonic stem cell lines has been investigated. From 3 to 8 days of suspension culture the cells form complex embryoid bodies with endoderm, basal lamina, mesoderm and ectoderm. Many are morphologically similar to embryos of the 6- to 8-day egg-cylinder stage. From 8 to 10 days of culture about half of the embryoid bodies expand into large cystic structures containing alphafoetoprotein and transferrin, thus being analagous to the visceral yolk sac of the postimplantation embryo. Approximately one third of the cystic embryoid bodies develop myocardium and when cultured in the presence of human cord serum, 30 % develop blood islands, thereby exhibiting a high level of organized development at a very high frequency. Furthermore, most embryonic stem cell lines observed exhibit similar characteristics. The in vitro developmental potential of embryonic stem cell lines and the consistency with which the cells express this potential are presented as aspects which open up new approaches to the investigation of embryogenesis.


Author(s):  
Rocío Castro-Viñuelas ◽  
Clara Sanjurjo-Rodríguez ◽  
María Piñeiro-Ramil ◽  
Tamara Hermida Gómez ◽  
Isaac Fuentes-Boquete ◽  
...  

2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Takuya Sato ◽  
Kumiko Katagiri ◽  
Tetsuhiro Yokonishi ◽  
Yoshinobu Kubota ◽  
Kimiko Inoue ◽  
...  

2015 ◽  
Vol 370 (1680) ◽  
pp. 20140365 ◽  
Author(s):  
Maria Rostovskaya ◽  
Nicholas Bredenkamp ◽  
Austin Smith

Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification.


2011 ◽  
Vol 21 (4) ◽  
pp. 751-764 ◽  
Author(s):  
Silvia V. Diaz Perez ◽  
Rachel Kim ◽  
Ziwei Li ◽  
Victor E. Marquez ◽  
Sanjeet Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document