scholarly journals The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology

2015 ◽  
Vol 95 (4) ◽  
pp. 1111-1155 ◽  
Author(s):  
Paolo Bernardi ◽  
Andrea Rasola ◽  
Michael Forte ◽  
Giovanna Lippe

The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca2+-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Wenchang Zhou ◽  
Fabrizio Marinelli ◽  
Corrine Nief ◽  
José D Faraldo-Gómez

Pathological metabolic conditions such as ischemia induce the rupture of the mitochondrial envelope and the release of pro-apoptotic proteins, leading to cell death. At the onset of this process, the inner mitochondrial membrane becomes depolarized and permeable to osmolytes, proposedly due to the opening of a non-selective protein channel of unknown molecular identity. A recent study purports that this channel, referred to as Mitochondrial Permeability Transition Pore (MPTP), is formed within the c-subunit ring of the ATP synthase, upon its dissociation from the catalytic domain of the enzyme. Here, we examine this claim for two c-rings of different lumen width, through calculations of their ion conductance and selectivity based on all-atom molecular dynamics simulations. We also quantify the likelihood that the lumen of these c-rings is in a hydrated, potentially conducting state rather than empty or blocked by lipid molecules. These calculations demonstrate that the structure and biophysical properties of a correctly assembled c-ring are inconsistent with those attributed to the MPTP.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 576 ◽  
Author(s):  
Yulia Baburina ◽  
Roman Krestinin ◽  
Irina Odinokova ◽  
Linda Sotnikova ◽  
Alexey Kruglov ◽  
...  

The mitochondrion is the main organelle of oxidative stress in cells. Increased permeability of the inner mitochondrial membrane is a key phenomenon in cell death. Changes in membrane permeability result from the opening of the mitochondrial permeability transition pore (mPTP), a large-conductance channel that forms after the overload of mitochondria with Ca2+ or in response to oxidative stress. The ketocarotenoid astaxanthin (AST) is a potent antioxidant that is capable of maintaining the integrity of mitochondria by preventing oxidative stress. In the present work, the effect of AST on the functioning of mPTP was studied. It was found that AST was able to inhibit the opening of mPTP, slowing down the swelling of mitochondria by both direct addition to mitochondria and administration. AST treatment changed the level of mPTP regulatory proteins in isolated rat heart mitochondria. Consequently, AST can protect mitochondria from changes in the induced permeability of the inner membrane. AST inhibited serine/threonine protein kinase B (Akt)/cAMP-responsive element-binding protein (CREB) signaling pathways in mitochondria, which led to the prevention of mPTP opening. Since AST improves the resistance of rat heart mitochondria to Ca2+-dependent stress, it can be assumed that after further studies, this antioxidant will be considered an effective tool for improving the functioning of the heart muscle in general under normal and medical conditions.


2012 ◽  
Vol 139 (5) ◽  
pp. 321-331 ◽  
Author(s):  
Lea K. Seidlmayer ◽  
Maria R. Gomez-Garcia ◽  
Lothar A. Blatter ◽  
Evgeny Pavlov ◽  
Elena N. Dedkova

Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization.


2002 ◽  
Vol 22 (6) ◽  
pp. 1926-1935 ◽  
Author(s):  
Angela Risso ◽  
Enrico Braidot ◽  
Maria Concetta Sordano ◽  
Angelo Vianello ◽  
Francesco Macrì ◽  
...  

ABSTRACT BMAP-28, a bovine antimicrobial peptide of the cathelicidin family, induces membrane permeabilization and death in human tumor cell lines and in activated, but not resting, human lymphocytes. In addition, we found that BMAP-28 causes depolarization of the inner mitochondrial membrane in single cells and in isolated mitochondria. The effect of the peptide was synergistic with that of Ca2+ and inhibited by cyclosporine, suggesting that depolarization depends on opening of the mitochondrial permeability transition pore. The occurrence of a permeability transition was investigated on the basis of mitochondrial permeabilization to calcein and cytochrome c release. We show that BMAP-28 permeabilizes mitochondria to entrapped calcein in a cyclosporine-sensitive manner and that it releases cytochrome c in situ. Our results demonstrate that BMAP-28 is an inducer of the mitochondrial permeability transition pore and that its cytotoxic potential depends on its effects on mitochondrial permeability.


Sign in / Sign up

Export Citation Format

Share Document