Links Between Dietary Salt Intake, Renal Salt Handling, Blood Pressure, and Cardiovascular Diseases

2005 ◽  
Vol 85 (2) ◽  
pp. 679-715 ◽  
Author(s):  
Pierre Meneton ◽  
Xavier Jeunemaitre ◽  
Hugh E. de Wardener ◽  
Graham A. Macgregor

Epidemiological, migration, intervention, and genetic studies in humans and animals provide very strong evidence of a causal link between high salt intake and high blood pressure. The mechanisms by which dietary salt increases arterial pressure are not fully understood, but they seem related to the inability of the kidneys to excrete large amounts of salt. From an evolutionary viewpoint, the human species is adapted to ingest and excrete <1 g of salt per day, at least 10 times less than the average values currently observed in industrialized and urbanized countries. Independent of the rise in blood pressure, dietary salt also increases cardiac left ventricular mass, arterial thickness and stiffness, the incidence of strokes, and the severity of cardiac failure. Thus chronic exposure to a high-salt diet appears to be a major factor involved in the frequent occurrence of hypertension and cardiovascular diseases in human populations.

2011 ◽  
Vol 110 (2) ◽  
pp. 468-471 ◽  
Author(s):  
Mirian J. Starmans-Kool ◽  
Alice V. Stanton ◽  
Yun Y. Xu ◽  
Simon A. McG Thom ◽  
Kim H. Parker ◽  
...  

Dietary salt intake is associated with high brachial blood pressure (BP) and increased risk of cardiovascular disease. We investigated whether changes in dietary salt intake are associated with changes in central BP and wave reflection in healthy volunteers. Ten healthy normotensive male volunteers (22–40 yr) participated in a 6-wk double-blind randomized crossover study to compare a low-dietary salt intake (60–80 mmol sodium/day) with a high-salt intake (low salt intake supplemented with 128 mmol sodium/day) on central BP and wave reflection. Brachial and carotid BP, carotid blood flow velocity, forward (Pf) and backward (Pb) pressure, wave intensity, body weight, and urinary electrolyte excretion were measured at the end of each crossover period. High salt intake significantly increased carotid systolic BP [98 (SD 11) vs. 91 mmHg (SD 13), P < 0.01] and increased wave reflection [ratio of backward to forward pressure (Pb/Pf) 0.13 (SD 0.02) vs. 0.11 (SD 0.03), P = 0.04] despite only small effects on brachial BP [114 (SD 9) vs. 112 mmHg (SD 6), P = 0.1]. Urinary sodium excretion and body weight were also increased following high salt intake. High salt intake disproportionately increases central BP compared with brachial BP as a result of enhanced wave reflection. These effects may contribute to the adverse effect of high dietary salt intake on the risk of cardiovascular disease.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Megan M Wenner ◽  
William B Farquhar

Observational cohort studies suggest that severe salt restriction increases cardiovascular morbidity/mortality, and the relationship between cardiovascular morbidity and dietary salt intake resembles a J-shaped curve. A high salt diet exaggerates sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses to several cardiovascular reflexes in salt-resistant animals. This study assessed whether salt restriction also exaggerates cardiovascular reflex responses and sensitizes central autonomic networks. To test this hypothesis, male Sprague-Dawley rats were fed low (0.01% NaCl), normal (0.1% NaCl), and high (4.0% NaCl) salt diet for 14-21 days. Baseline mean ABP was not different across groups (low: 104±4, normal: 107±4, high: 107±4mmHg). Activation of sciatic afferents (1ms pulse, 500uA, 5s duration, 2-20Hz) produced significantly greater increases in renal SNA (5Hz; low: 196±12, normal: 136±9, high: 177±8%, n=8, P<0.05) and ABP (5Hz; low: 29±3, normal: 16±1, high: 24±2 mmHg, n=8, P<0.05) of rats fed low and high versus normal NaCl diets. Activation of the aortic depressor nerve (2ms pulse, 500uA, 15s duration, 2-20Hz) produced significantly greater decreases in renal SNA (5Hz; low: -55±9, normal: -34±8, high: -63±13%, n=7-8, P<0.05) and ABP (5Hz; low: -31±3, normal: -15±5, high: -32±5 mmHg, n=7-8, P<0.05) of rats fed low and high versus normal NaCl diets. To test whether dietary salt intake sensitized central sympathetic circuits, microinjection of L-glutamate (0.1-1nmol, 30nL) in the rostral ventrolateral medulla produced significantly greater increases in renal SNA (0.1nmol; low: 212±15, normal: 149±8, high: 183±17%, n=7-8, P<0.05) and ABP (0.1Hz; low: 20±2, normal: 12±2, high: 22±2 mmHg, n=7-8, P<0.05) of rats fed low and high versus normal NaCl diets. Finally, rats fed low or high NaCl versus normal NaCl diets displayed exaggerated cardiovascular responses to cage switch or mild restraint and increased 24-h blood pressure variability. The present findings show that severe salt restriction and excess dietary salt intake exaggerate sympathetic and cardiovascular responses, and may be explained by a parallel change in the sensitivity of central autonomic networks to resemble a J-shaped curve.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yulia Grigorova ◽  
Wen Wei ◽  
Valentina Zernetkina ◽  
Ondrej Juhasz ◽  
Edward Lakatta ◽  
...  

Background: Marinobufagenin (MBG), an endogenous cardiotonic steroid, is a Na/K-ATPase inhibitor and a vasoconstrictor. Previously it was demonstrated, that administration of 3E9 anti-MBG-antibody (mAb) reduced blood pressure (BP) and reversed left ventricular fibrosis in animal models of salt-sensitive hypertension and nephropathy. In the present study we investigated whether mAb alleviates BP and vascular remodeling in normotensive rats on a high salt intake. Methods: Wistar rats (5 months old) received normal salt diet (CTRL; n=8) or high salt intake (2% NaCl in drinking water) for 4 weeks. Rats on a high salt were administered vehicle (SALT; n=8) or mAb (50 ug/kg) (SALT-AB; n=8) 3 times during the last week of a high salt diet. BP was measured at baseline, after 3 and 4 weeks of experiment. Na/K-ATPase activity was measured in erythrocytes. Aortas were weighed, and were used to study sensitivity to the vasorelaxant effect of sodium nitroprusside (SNP), and for the histochemistry analysis of collagen deposition. Renal 24-hr MBG excretion was measured at week 4. Results: In SALT vs. CTRL, in the absence of BP changes, elevated levels of MBG (14.1±1.1 vs. 9.0±1.6 pmol/24hr, p<0.05) were associated with inhibition of erythrocyte Na/K-ATPase (12.6±0.3 vs. 14.2±0.35 μmol Pi/ml/hr, p<0.05), increased aortic weights (217±15 vs. 158±9 mg/kg BW, p<0.01), increased levels of collagen in aorta (2.5-fold; p<0.05), and compromised SNP vasorelaxant effect in aortic explants (EC50=167±19.3 nM vs. 99±2.0 nM; P<0.01). Antibody treatment in SALT-AB vs. SALT increased Na/K-ATPase activity (13.93±0.54 μmol Pi/ml/hr, p<0.05), reduced the aortic weight (180±12 mg/kg; P<0.05) and collagen deposition 3-fold (P<0.05), and restored the vasorelaxation of aortic rings by SNP to the levels in CTRL (70±1.5 nM, p<0.01). Conclusion: These findings for the first time demonstrated that in normotensive rats on a high salt intake heightened MBG levels induced vascular fibrosis and impairment of vasorelaxation in the absence of blood pressure changes. Immunoneutralization of MBG reversed these changes. Thus, high dietary NaCl intake in normotensive animals can stimulate vascular fibrosis via pressure-independent/ MBG-dependent mechanisms, and this remodeling is reversible.


2013 ◽  
Vol 45 (18) ◽  
pp. 827-833 ◽  
Author(s):  
Katja Grabowski ◽  
Gerold Koplin ◽  
Bujar Aliu ◽  
Leonard Schulte ◽  
Angela Schulz ◽  
...  

An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ∼19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1F344 strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (−17.7%, P < 0.05) in SHRSP-1F344 in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake ( P < 0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP.


1993 ◽  
Vol 264 (6) ◽  
pp. H1810-H1816 ◽  
Author(s):  
M. A. Boegehold

This study evaluated the influence of high dietary salt intake on nitric oxide (NO) activity in the arteriolar network of rats resistant to salt-induced hypertension. The spinotrapezius muscle microvasculature was studied in inbred Dahl salt-resistant (SR/Jr) rats fed low (0.45%)- or high (7%)-salt diets for 4–5 wk. Arterial pressures were not different between groups at any time during the study. NO synthesis inhibition with NG-nitro-L-arginine-methyl ester (L-NAME) constricted arcade arterioles in low-salt SR/Jr and dilated arcade arterioles in high-salt SR/Jr. Arcade arteriole dilation to acetylcholine (ACh), but not sodium nitroprusside (SNP), was impaired in high-salt SR/Jr. In contrast, transverse and distal arteriole responses to L-NAME, ACh, and SNP were identical in high- and low-salt SR/Jr. These findings indicate that high salt intake, in the absence of increased arterial pressure, suppresses the influence of basal and evoked NO on vascular tone in arcading arterioles, but not in smaller transverse and distal arterioles. Unaltered SNP responses in high-salt SR/Jr suggest that this effect does not involve a change in arteriolar smooth muscle responsiveness to NO.


Author(s):  
Minjung Kang ◽  
Eunjeong Kang ◽  
Hyunjin Ryu ◽  
Yeji Hong ◽  
Seung Seok Han ◽  
...  

Abstract Background Diet is a modifiable factor of chronic kidney disease (CKD) progression. However, the effect of dietary salt intake on CKD progression remains unclear. Therefore, we analyzed the effect of dietary salt intake on renal outcome in Korean patients with CKD. Methods We measured 24-h urinary sodium (Na) excretion as a marker of dietary salt intake in the prospective, multi-center, longitudinal KoreaN cohort study for Outcome in patients With CKD (KNOW-CKD). Data were analyzed from CKD patients at Stages G3a to G5 (n = 1254). We investigated the association between dietary salt intake and CKD progression. Patients were divided into four quartiles of dietary salt intake, which was assessed using measured 24-h urinary Na excretion. The study endpoint was composite renal outcome, which was defined as either halving the estimated glomerular filtration rate or developing end-stage renal disease. Results During a median (interquartile range) follow-up of 4.3 (2.8–5.8) years, 480 (38.7%) patients developed the composite renal event. Compared with the reference group (Q2, urinary Na excretion: 104.2 ≤ Na excretion &lt; 145.1 mEq/day), the highest quartile of measured 24-h urinary Na excretion was associated with risk of composite renal outcome [Q4, urinary Na excretion ≥192.9 mEq/day, hazard ratio 1.8 (95% confidence interval 1.12–2.88); P = 0.015] in a multivariable hazards model. Subgroup analyses showed that high-salt intake was particularly associated with a higher risk of composite renal outcome in women, in patients &lt;60 years of age, in those with uncontrolled hypertension and in those with obesity. Conclusions High salt intake was associated with increased risk of progression in CKD.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Daniele Nunes Ferreira ◽  
Isis A. Katayama ◽  
Ivone B. Oliveira ◽  
Kaleizu T. Rosa ◽  
Michella S. Coelho ◽  
...  

1995 ◽  
Vol 269 (5) ◽  
pp. R1225-R1229 ◽  
Author(s):  
T. Ishida ◽  
M. Ishida ◽  
H. Matsuura ◽  
R. Ozono ◽  
G. Kajiyama ◽  
...  

To determine whether abnormal cellular Ca2+ handling is involved in salt-induced hypertension of Dahl salt-sensitive rats (DS), we investigated Ca2+ handling in fura 2-loaded platelets of DS and Dahl salt-resistant rats (DR) fed a high-NaCl (8%) or a low-NacL (0.3%) diet for 4 wk from 5 wk of age. At 5 wk of age, blood pressure, resting cytosolic Ca2+ concentration ([Ca2+]i), the thrombin-evoked increase in [Ca2+]i and the size of internal Ca2+ stores of DS were comparable with those of DR. After 4 wk on the diets, resting [Ca2+]i of DS on high-NaCl diet was lower than that of DS on low-NaCl diet, and there was no effect of high salt intake on resting [Ca2+]i in DR. In DS, high salt intake attenuated the [Ca2+]i response to thrombin in the presence of external Ca2+. In contrast, the [Ca2+]i response to thrombin in the absence of external Ca2+ was enhanced by high salt intake in DS. The size of internal Ca2+ stores was increased by high salt intake in DS but not in DR. These data suggest that it is not obligatory for hypertension to be accompanied by an increase in platelet [Ca2+]i.


Sign in / Sign up

Export Citation Format

Share Document