Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP

1997 ◽  
Vol 77 (4) ◽  
pp. 1133-1164 ◽  
Author(s):  
H. C. Lee

Cells possess various mechanisms for transducing external signals to intracellular responses. The discovery of inositol 1,4,5-trisphosphate (IP3) as a messenger for mobilizing internal Ca2+ stores has centralized Ca2+ mobilization among signaling mechanisms. Results reviewed in this article establish that, in addition to IP3, the internal Ca2+ stores can be mobilized by at least two other molecules, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), via totally independent mechanisms. Cyclic ADP-ribose is a newly discovered cyclic nucleotide derived from NAD, but, unlike adenosine 3',5'-cyclic monophosphate, its main signaling function is modulation of Ca(2+)-induced Ca2+ release, a major mechanism of Ca2+ mobilization in addition to the IP3 pathway. Evidence shows that cADPR may in fact be responsible for mediating the Ca(2+)-mobilizing activity of the gaseous messenger nitric oxide. Cells responsive to cADPR are widespread and include species from plant to mammal, indicating the generality of cADPR as a signaling molecule. In addition to cADPR, NAADP, a metabolite of NADP, can also mobilize Ca2+ stores. The release mechanism and the stores on which NAADP acts are distinct from cADPR and IP3. Nicotinic acid adenine dinucleotide phosphate may play a role in generating Ca2+ oscillations, since liberation of NAADP in live cells by photolyzing its caged analog produces long lasting Ca2+ oscillations. These two new Ca2+ agonists are intimately related, since the same metabolic enzymes can, under appropriate conditions, synthesize either one, suggesting a unified mechanism may regulate both pathways. Elucidation of these two new Ca2+ mobilization pathways is likely to have an important impact on our understanding of cellular signaling mechanisms.

2006 ◽  
Vol 395 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Miklós Mándi ◽  
Balázs Tóth ◽  
György Timár ◽  
Judit Bak

NAADP (nicotinic acid–adenine dinucleotide phosphate) is fast emerging as a new intracellular Ca2+-mobilizing messenger. NAADP induces Ca2+ release by a mechanism that is distinct from IP3 (inositol 1,4,5-trisphosphate)- and cADPR (cADP-ribose)-induced Ca2+ release. In the present study, we demonstrated that micromolar concentrations of NAADP trigger Ca2+ release from rat hepatocyte microsomes. Cross-desensitization to IP3 and cADPR by NAADP did not occur in liver microsomes. We report that non-activating concentrations of NAADP can fully inactivate the NAADP-sensitive Ca2+-release mechanism in hepatocyte microsomes. The ability of thapsigargin to block the NAADP-sensitive Ca2+ release is not observed in sea-urchin eggs or in intact mammalian cells. In contrast with the Ca2+ release induced by IP3 and cADPR, the Ca2+ release induced by NAADP was completely independent of the free extravesicular Ca2+ concentration and pH (in the range 6.4–7.8). The NAADP-elicited Ca2+ release cannot be blocked by the inhibitors of the IP3 receptors and the ryanodine receptor. On the other hand, verapamil and diltiazem do inhibit the NAADP- (but not IP3- or cADPR-) induced Ca2+ release.


2001 ◽  
Vol 12 (1) ◽  
pp. 54-60 ◽  
Author(s):  
JINGFEI CHENG ◽  
AHAD N. K. YUSUFI ◽  
MICHAEL A. THOMPSON ◽  
EDUARDO N. CHINI ◽  
JOSEPH P. GRANDE

Abstract. Nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from β-NADP, has been shown to trigger Ca2+ release from intracellular stores of invertebrate eggs and mammalian cell microsomes. NAADP-induced Ca2+ release occurs through a mechanism distinct from that of inositol-1,4,5-trisphosphate— or cyclic ADP-ribose—elicited Ca2+ release. This study investigated whether NAADP can be synthesized in rat kidney. Extracts from glomeruli, mesangial cells, and papilla have high NAADP synthetic capacities. Conversely, synthesis of NAADP in kidney cortex was almost undetectable. Furthermore, 9-cis-retinoic acid significantly up-regulated NAADP synthesis in mesangial cells. Authenticity of NAADP biosynthesis in glomeruli was affirmed by HPLC analysis. NAADP stimulated Ca2+ release from mesangial cell microsomes through a pathway distinct from that of inositol-1,4,5-trisphosphate or cyclic ADP-ribose. NAADP-triggered Ca2+ release may play an important role in regulation of renal function.


2016 ◽  
Vol 27 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Ogheneochukome Lolodi ◽  
Hiroya Yamazaki ◽  
Shotaro Otsuka ◽  
Masahiro Kumeta ◽  
Shige H. Yoshimura

Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2645-2654 ◽  
Author(s):  
C. Yue ◽  
K.L. White ◽  
W.A. Reed ◽  
T.D. Bunch

Intracellular Ca2+ (Ca2+i) transients during fertilization are critical to the activation of eggs in all species studied. Activation of both the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and ryanodine receptor (RYR) are responsible for the calcium oscillations during fertilization in sea urchin eggs. Using in vitro matured bovine oocytes loaded with Fura-2 AM ester as Ca2+i indicator, we addressed whether IP3Rs and RYRs coexist in mammalian eggs. Our results indicate that microinjection of 50–250 nM IP3 or 10–20 mM caffeine, 100–200 microM ryanodine and 4–8 microM cyclic ADP-ribose all induced Ca2+i release. The Ca2+i release induced by 250 nM IP3 could only be inhibited by prior injection of 1 mg/ml heparin which was overcome by continuous injection of IP3 to 1 microM. Prior injection of either 50 microM ruthenium red, 50 microM procaine or 1 % vehicle medium (VM) did not affect the Ca2+i release induced by IP3. Prior injection of heparin or VM did not affect the Ca2+i release induced by 10–20 mM caffeine or 200 microM ryanodine, but prior injection of 50 microM ruthenium red or procaine completely inhibited the effect of 10–20 mM caffeine. In addition, continuous injection of caffeine up to 40 mM overcame the inhibitory effect of ruthenium red or procaine. The same 50 microM concentration of ruthenium red or procaine only partially blocked the effect of 200 microM ryanodine, but 200 microM ruthenium red or procaine completely blocked the effect of 200 microM ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 86 (1) ◽  
pp. 308-311 ◽  
Author(s):  
Xiaohu Dong ◽  
Cheol Ho Heo ◽  
Shiyu Chen ◽  
Hwan Myung Kim ◽  
Zhihong Liu

Sign in / Sign up

Export Citation Format

Share Document