signaling function
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 45)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Khawar Ali ◽  
Wenjuan Li ◽  
Yaopeng Qin ◽  
Shanshan Wang ◽  
Lijie Feng ◽  
...  

Plants acquire the ability to adapt to the environment using transmembrane receptor-like kinases (RLKs) to sense the challenges from their surroundings and respond appropriately. RLKs perceive a variety of ligands through their variable extracellular domains (ECDs) that activate the highly conserved intracellular kinase domains (KDs) to control distinct biological functions through a well-developed downstream signaling cascade. A new study has emerged that brassinosteroid-insensitive 1 (BRI1) family and excess microsporocytes 1 (EMS1) but not GASSHO1 (GSO1) and other RLKs control distinct biological functions through the same signaling pathway, raising a question how the signaling pathway represented by BRI1 is specified. Here, we confirm that BRI1-KD is not functionally replaceable by GSO1-KD since the chimeric BRI1-GSO1 cannot rescue bri1 mutants. We then identify two subdomains S1 and S2. BRI1 with its S1 and S2 substituted by that of GSO1 cannot rescue bri1 mutants. Conversely, chimeric BRI1-GSO1 with its S1 and S2 substituted by that of BRI1 can rescue bri1 mutants, suggesting that S1 and S2 are the sufficient requirements to specify the signaling function of BRI1. Consequently, all the other subdomains in the KD of BRI1 are functionally replaceable by that of GSO1 although the in vitro kinase activities vary after replacements, suggesting their functional robustness and mutational plasticity with diverse kinase activity. Interestingly, S1 contains αC-β4 loop as an allosteric hotspot and S2 includes kinase activation loop, proposedly regulating kinase activities. Further analysis reveals that this specific function requires β4 and β5 in addition to αC-β4 loop in S1. We, therefore, suggest that BRI1 specifies its kinase function through an allosteric regulation of these two subdomains to control its distinct biological functions, providing a new insight into the kinase evolution.


2021 ◽  
Author(s):  
Marianna Bergamaschi Ganapini
Keyword(s):  

2021 ◽  
pp. 2100880
Author(s):  
Masahiro Yamashita ◽  
Miyuki Niisato ◽  
Yasushi Kawasaki ◽  
Sinem Karaman ◽  
Marius R. Robciuc ◽  
...  

RationaleSuccessful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear.ObjectivesWe investigated the ameliorative effects of vascular endothelial growth factor receptor-3 (VEGFR-3)/VEGF-C signaling in macrophages in lipopolysaccharide-induced lung injury.MethodsLipopolysaccharides were intranasally injected into wild-type and transgenic mice. Gain- and loss- of VEGF-C/VEGFR-3 signaling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3, or, anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells.Measurements and Main ResultsThe early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage fluid (BALF) interleukin (IL)-10, but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to the mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3 deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of extrinsic apoptotic neutrophils, and VEGF-C/VEGFR-3 signaling increased efferocytosis via upregulation of integrin alpha v in the macrophages. We also found that incubation with BALF from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreases VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages.ConclusionsVEGFR-3/VEGF-C signaling in macrophages ameliorates experimental lung injury. This mechanism may provide an explanation also for ARDS resolution.


Author(s):  
Jiang Liu ◽  
Jiang Tian ◽  
Komal Sodhi ◽  
Joseph I. Shapiro

AbstractIn different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored. Graphic Abstract


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhiying Zhao ◽  
Sha Tang ◽  
Yiming Zhang ◽  
Jingjing Yue ◽  
Jiaqi Xu ◽  
...  

AbstractBrassinosteroids (BRs) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, those in foxtail millet remain largely unknown. Here, we show that the BR signaling function of BRASSINOSTEROID INSENSITIVE 1 (BRI1) is conserved between Arabidopsis and foxtail millet, a new model species for C4 and Panicoideae grasses. We identified four putative BR receptor genes in the foxtail millet genome: SiBRI1, SiBRI1-LIKE RECEPTOR KINASE 1 (SiBRL1), SiBRL2 and SiBRL3. Phylogenetic analysis was used to classify the BR receptors in dicots and monocots into three branches. Analysis of their expression patterns by quantitative real-time PCR (qRT-PCR) showed that these receptors were ubiquitously expressed in leaves, stems, dark-grown seedlings, roots and non-flowering spikelets. GFP fusion experiments verified that SiBRI1 localized to the cell membrane. We also explored the SiBRI1 function in Arabidopsis through complementation experiments. Ectopic overexpression of SiBRI1 in an Arabidopsis BR receptor loss-of-function mutant, bri1-116, mostly reversed the developmental defects of the mutant. When SiBRI1 was overexpressed in foxtail millet, the plants showed a drooping leaf phenotype and root development inhibition, lateral root initiation inhibition, and the expression of BR synthesis genes was inhibited. We further identified BRI1-interacting proteins by immunoprecipitation (IP)-mass spectrometry (MS). Our results not only demonstrate that SiBRI1 plays a conserved role in BR signaling in foxtail millet but also provide insight into the molecular mechanism of SiBRI1.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A656-A656
Author(s):  
Jason M Conley ◽  
Hongxia Ren

Abstract GPR17 is a G protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Our genetic knockout studies in rodents suggest that GPR17 is a potential therapeutic target for the treatment of metabolic diseases. However, the contributions of GPR17 to human metabolism and metabolic deficits are not well understood. Here, we analyzed the human GPR17 coding sequences of individuals from control and metabolic disease cohorts that were comprised of patients with clinical phenotypes including severe insulin resistance, hypercholesterolemia, and obesity. Across cohorts, 18 nonsynonymous GPR17 variants were identified, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, cellular localization, and downstream functional signaling profiles of nine human GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). We found that the protein expression levels and subcellular localization for each of the nine GPR17 variants were similar to that of the wild type GPR17. As the endogenous GPR17 ligand is still elusive, we used a synthetic GPR17 agonist to quantitatively measure the functional signaling profiles of GPR17 variants. We found some of the variants had distinctly altered signaling profiles. GPR17-G136S lost agonist-mediated cAMP, Ca2+, and beta-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT but had impaired Ca2+ and beta-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling but enhanced agonist-stimulated beta-arrestin recruitment. Also, GPR17-G354V retained cAMP and Ca2+ signaling function but had attenuated beta-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with distinct signaling profiles, including differential signaling perturbations that resulted in receptor signaling bias. These results are expected to contribute to our understanding of the molecular signaling mechanisms underlying GPR17 in metabolic regulation.


2021 ◽  
Author(s):  
Kuohan Li ◽  
Jie Zheng ◽  
Melissa Wirawan ◽  
Trinh Mai Nguyen ◽  
Olga Fedorova ◽  
...  

DRH-3 belongs to the family of duplex RNA-dependent ATPases (DRAs), which include Dicer and RIG-I-like receptors (RLRs). DRH-3 is critically involved in germline development and RNAi-facilitated chromosome segregation via the 22G-siRNA pathway in C. elegans. The molecular understanding of DRH-3 and its function in endogenous RNAi pathways remains elusive. In this study, we solved the crystal structures of the DRH-3 N-terminal domain (NTD) and the C-terminal domains (CTDs) in complex with 5'-triphosphorylated RNAs. The NTD of DRH-3 adopts a distinct fold of tandem Caspase Activation and Recruitment Domains (CARDs) structurally similar to the CARDs of RIG-I and MDA5, suggesting a signaling function in the endogenous RNAi biogenesis. The CTD preferentially recognizes 5'-triphosphorylated double-stranded RNAs bearing the typical features of secondary siRNA transcripts. The full-length DRH-3 displays unique structural dynamics upon binding to RNA duplexes that differ from RIG-I or MDA5. These unique molecular features of DRH-3 help explain its function in RNAi in worms and the evolutionary divergence of the Dicer-like helicases.


2021 ◽  
Vol 9 (3) ◽  
pp. 575
Author(s):  
Ke Yu ◽  
Ioannis A. Stringlis ◽  
Sietske van Bentum ◽  
Ronnie de Jonge ◽  
Basten L. Snoek ◽  
...  

Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6′h1. We found that coumarins in F6′H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6′H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins’ function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.


Author(s):  
Ying Liu ◽  
Yu-Ting Shao ◽  
Richard Ward ◽  
Li Ma ◽  
Hao-Xin Gui ◽  
...  

Abstract The C-terminal of GPCRs is now recognized as being important for G protein activation and signaling function. To detect the role of C-terminal tail in receptor activation, we used the α1b-AR, which has a long C-terminal of 164 amino acids. We constructed the intramolecular FRET sensors, in which the C-terminal was truncated to 10 (∆C-10), 20 (∆C-20), 30 (∆C-30), 50 (∆C-50), 70 (∆C-70) or 90 (∆C-90). The truncated mutants of ∆C-10, ∆C-20 or ∆C-30 cannot induce FRET signal changes and downstream ERK1/2 phosphorylation. However, the truncated mutants of ∆C-50, ∆C-70 or ∆C-90 induce significant FRET signal changes and downstream ERK1/2 phosphorylation, especially ∆C-90. This is particularly true in the case of the ∆C-90, ∆C-70, or ∆C-50 which retained the potential phosphorylation sites (Ser401, Ser404, Ser408 or Ser410). The ∆C-90 showed an increase in agonist-induced FRET signal changes and ERK1/2 phosphorylation in PKC- or endocytosis-dependent and EGFR-, src- or β-arrestin 2-independent.


Sign in / Sign up

Export Citation Format

Share Document