Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln=Dy, Ho, Er, Tm, Yb)

2007 ◽  
Vol 22 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Min Li ◽  
Wenxia Yuan ◽  
Jingfang Wang ◽  
Cong Gu ◽  
Huaizhou Zhao

Trigonal rare-earth dioxymonocyanamides Ln2O2CN2 (Ln=Dy, Ho, Er, Tm, Yb) were synthesized by the modified solid-state metathesis (SSM) method, in which Ln2O3 and melamine C3N6H6 were mixed and heated at 850 °C in vacuumed silica ampoules. Possible chemical reaction pathways are proposed. X-ray diffraction (XRD) patterns of Ln2O2CN2 were refined using the Rietveld method. Compounds Ln2O2CN2 crystallize in the trigonal system with space group P3m1, Z=1, and cell parameters of a and c varying from 3.7267(1) to 3.6407(1) Å and from 8.1848(3) to 8.1152(3) Å, respectively, as Ln atoms change from Dy to Yb. These compounds have stacking structures of Ln2O22+ and CN22− layers, similar to those of previously reported compounds Ln2O2CN2 (Ln=Ce, Pr, Nd, Sm, Eu, Gd). The presence of CN22− ions has been confirmed by infrared spectroscopy, with two characteristic peaks in the vicinity of 651 and 2075 cm−1.

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 806 ◽  
Author(s):  
Veronica Paterlini ◽  
Marco Bettinelli ◽  
Rosanna Rizzi ◽  
Asmaa El Khouri ◽  
Manuela Rossi ◽  
...  

Luminescence properties of europium-doped Ca10-xEux(PO4)6(OH)2 (xEu = 0, 0.01, 0.02, 0.10 and 0.20) and gadolinium-doped hydroxyapatite Ca9.80Gd0.20(PO4)6(OH)2 (HA), synthesized via solid-state reaction at T = 1300 °C, were investigated using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), and luminescence spectroscopy. Crystal structure characterization (from unit cell parameters determination to refined atomic positions) was achieved in the P63/m space group. FTIR analyses show only slight band shifts of (PO4) modes as a function of the rare earth concentration. Structural refinement, achieved via the Rietveld method, and luminescence spectroscopy highlighted the presence of dopant at the Ca2 site. Strong luminescence was observed for all Eu- and Gd-doped samples. Our multi-methodological study confirms that rare-earth (RE)-doped synthetic hydroxyapatites are promising materials for bio-imaging applications.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


1978 ◽  
Vol 56 (14) ◽  
pp. 1874-1880 ◽  
Author(s):  
Philippe Joubert ◽  
Roland Bougon ◽  
Bernard Gaudreau

The oxypentafluorouranates(VI) MUOF5, where M = NH4, K, Rb, Cs, have been synthetized from reaction of UOF4 with the ammonium or corresponding alkali metal fluoride in liquid SO2. According to X-ray diffraction, Raman and infrared spectroscopy, and from an isomorphism with the corresponding hexafluorouranates(V) MUF6, two different environments around the uranium atom are observed. In CsUOF5 the five fluorine atoms and the oxygen around the uranium result in a pseudo-octahedral surrounding whereas for the other complexes (M = NH4, K, Rb) each uranium is surrounded by eight light atoms forming a dodecahedron. In this structure the dodecahedra are linked together by fluorine atoms to form infinite chains. The UOF5− ion has been characterized by vibrational spectroscopy in the solid state. The proposed assignment, which was made with the assumption of a C4v symmetry of the UOF5− ion, was confirmed by a force constant calculation. From these data and contrary to the values reported for comparable oxypentafluoroanions, the axial fluorine is found to be less ionic than the equatorial ones.


2019 ◽  
Vol 964 ◽  
pp. 45-49 ◽  
Author(s):  
Purnama Sari Suci ◽  
Mochamad Zainuri ◽  
E. Endarko

This study has been successfully synthesized Nickel (Ni)-doped olivine-type LiNixFe1-xPO4/C with x= 0, 0.01, 0.02, 0.03 as cathode materials, using the solid-state reaction method was in order to investigate the effect on the structure and morphology. The precursor material of ion Ferro (Fe) is used natural material from ironstone of Tanah Laut Kalimantan Indonesian which combined with proanalis materials. The X-Ray Diffraction (XRD) patterns on the structure magnetite iron have shown that single phase of Fe3O4 and the patterns of structure LiNixFe1-xPO4/C indicated that doping Ni2+ have shown the orthorhombic structure with space group Pnma for all LiNixFe1-xPO4/C samples. Base on Rietveld method by Rietica software, the formation of phase resulted in olivine structure except at the concentration x = 0.02 and 0.03 have a second phase, that is nasicon structure with a smaller percentage than olivine structure. The general condition, coating carbon on LiNixFe1-xPO4/C particles by solid state reaction can be perfect which demonstrate the homogeneous existence of carbon on the surface of LiNixFe1-xPO4/C particles shown by images Scanning Electron Microscopy (SEM). The increased doping of Ni ions causing the Fe ions to decrease base on Energy Dispersive X-Ray Spectroscopy (EDS) observations.


1978 ◽  
Vol 33 (1-2) ◽  
pp. 39-49 ◽  
Author(s):  
Douglas L. Dorset ◽  
Walter A. Pangborn ◽  
Anthony J. Hancock ◽  
Iris S. Lee

Abstract Diffraction studies on natural 1,2-dipalmitin and on analogs, including those based on the configurational isomers of cyclopentane-1,2,3-triol reveal that the 1,2-diglycerides crystallize from solvent with chain methylene packing identical to the monoclinic form of even-chain alkanes. The chains probably are folded back in “hairpin” fashion as found in phospholipid crystal structures. Acyl shifts are observed to occur in the crystalline solid state at room temperature to give the 1,3-diglyceride. Analogs based on the above-mentioned cyclitols show that isomers with adjacent chains trans to the ring (possibly extended chain packing) or with chains cis to the ring (“hair­ pin”) crystallize readily. Both possibly extended chain configurational isomers have the α-form as well as β′-forms and a β-polymorph. The hairpin isomers each give a β′-polymorph but only the all-cts isomer gives an α-form.


2018 ◽  
Vol 73 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Lu Pan ◽  
Xiaozhan Yang ◽  
Chaoyue Xiong ◽  
Dashen Deng ◽  
Chunlin Qin ◽  
...  

AbstractA series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l’Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.


2003 ◽  
Vol 36 (4) ◽  
pp. 1082-1084 ◽  
Author(s):  
V. Grover ◽  
S. N. Achary ◽  
A. K. Tyagi

Structural analysis of anion-rich C-type Gd2O3was carried by the Rietveld refinement of the powder X-ray diffraction data for compositions Gd0.8Ce0.2O1.60and Gd0.6Ce0.4O1.70. Both compounds have a body-centred cubic lattice (space groupIa\bar{3}, No. 206,Z= 32) with unit-cell parameters of 10.8488 (1) and 10.8542 (1) Å, respectively. Both of these compounds are iso-structural with the C-type rare earth oxides, with excess anions as required for charge balance. The structural analysis reveals that there are two different kinds of metal ion site, namely 8b(M1) and 24d(M2), and two different kinds of anion sites, namely 48e(O1) and 16c(O2). The excess anions occupy the 16c(xxx) sites. The two metal ions each form an approximately eightfold-coordination polyhedron with O1 and O2. The details of these two compositions are explained and compared with both the CeO2structure and the Gd2O3structure,i.e.the end member.


1998 ◽  
Vol 54 (4) ◽  
pp. 358-364 ◽  
Author(s):  
K. G. Hatzisymeon ◽  
S. C. Kokkou ◽  
A. N. Anagnostopoulos ◽  
P. I. Rentzeperis

A series of thallium ternary chalcogenides with the composition Tl2x In2(1−x)Se2, x = 0.2, 0.3,...0.9, have been studied by X-ray powder and, for some of them, single-crystal diffraction. They are tetragonal, space group I4/mcm, Z = 4, and isostructural with the binary semiconductor TlSe. Their crystal structures have been solved by direct methods and refined by the Rietveld method to a precision which is satisfactorily comparable to single-crystal results. As x is changed from x = 0.2 to x = 0.9 the unit-cell parameters and volume decrease or increase following Kurnakov's law, which is valid for solid solutions. Refined positional parameters of Se, In—Se and Tl—Se bond lengths vary with x also according to the same law. The distribution of In and Tl cations in 4(a) and 4(b) sites depends on the stoichiometry x and the crystals are composed of [In3+Se2]_{\infty}^- chains along the c axis in which InSe4 tetrahedra share edges; the chains are interconnected with Tl+(In+) ions.


2014 ◽  
Vol 29 (3) ◽  
pp. 254-259 ◽  
Author(s):  
Naoki Takani ◽  
Hisanori Yamane

CaTi1−xSnxO3 (x = 0.0–1.0) solid solutions were prepared by solid-state reaction at 1450 °C. Rietveld refinement of their powder X-ray diffraction patterns revealed that all the solid solutions crystallized in orthorhombic cells with the perovskite-type structure, the space group Pbnm. The refined unit-cell parameters linearly increased with nominal tin contents x.


2008 ◽  
Vol 23 (3) ◽  
pp. 232-240
Author(s):  
Abderrahim Aatiq ◽  
Rachid Bakri ◽  
Aaron Richard Sakulich

Synthesis and structure of two phosphates belonging to the ternary Sb2O5–In2O3–P2O5 system are realized. Structures of SbV1.50InIII0.50(PO4)3 and (SbV0.50InIII0.50)P2O7 phases, obtained by solid state reaction in air at 950 °C, were determined at room temperature from X-ray powder diffraction using the Rietveld method. SbV1.50InIII0.50(PO4)3 have a monoclinic (space group P21/n) distortion of the Sc2(W O4)3-type framework. Its structure is constituted by corner-shared SbO6 or InO6 octahedra and PO4 tetrahedra. Monoclinic unit cell parameters are a=11.801(2) Å, b=8.623(1) Å, c=8.372(1) Å, and β=90.93(1)°. (Sb0.50In0.50)P2O7 is isotypic with (Sb0.50Fe0.50)P2O7 and crystallizes in orthorhombic system (space group Pna21) with a=7.9389(1) Å, b=16.0664(2) Å, and c=7.9777(1) Å. Its structure is built up from corner-shared SbO6 or InO6 octahedra and P2O7 groups (two group-types). Each P2O7 group shares its six vertices with three SbO6 and three InO6 octahedra, and each octahedron is connected to six P2O7 groups.


Sign in / Sign up

Export Citation Format

Share Document