scholarly journals Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 806 ◽  
Author(s):  
Veronica Paterlini ◽  
Marco Bettinelli ◽  
Rosanna Rizzi ◽  
Asmaa El Khouri ◽  
Manuela Rossi ◽  
...  

Luminescence properties of europium-doped Ca10-xEux(PO4)6(OH)2 (xEu = 0, 0.01, 0.02, 0.10 and 0.20) and gadolinium-doped hydroxyapatite Ca9.80Gd0.20(PO4)6(OH)2 (HA), synthesized via solid-state reaction at T = 1300 °C, were investigated using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), and luminescence spectroscopy. Crystal structure characterization (from unit cell parameters determination to refined atomic positions) was achieved in the P63/m space group. FTIR analyses show only slight band shifts of (PO4) modes as a function of the rare earth concentration. Structural refinement, achieved via the Rietveld method, and luminescence spectroscopy highlighted the presence of dopant at the Ca2 site. Strong luminescence was observed for all Eu- and Gd-doped samples. Our multi-methodological study confirms that rare-earth (RE)-doped synthetic hydroxyapatites are promising materials for bio-imaging applications.

2007 ◽  
Vol 22 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Min Li ◽  
Wenxia Yuan ◽  
Jingfang Wang ◽  
Cong Gu ◽  
Huaizhou Zhao

Trigonal rare-earth dioxymonocyanamides Ln2O2CN2 (Ln=Dy, Ho, Er, Tm, Yb) were synthesized by the modified solid-state metathesis (SSM) method, in which Ln2O3 and melamine C3N6H6 were mixed and heated at 850 °C in vacuumed silica ampoules. Possible chemical reaction pathways are proposed. X-ray diffraction (XRD) patterns of Ln2O2CN2 were refined using the Rietveld method. Compounds Ln2O2CN2 crystallize in the trigonal system with space group P3m1, Z=1, and cell parameters of a and c varying from 3.7267(1) to 3.6407(1) Å and from 8.1848(3) to 8.1152(3) Å, respectively, as Ln atoms change from Dy to Yb. These compounds have stacking structures of Ln2O22+ and CN22− layers, similar to those of previously reported compounds Ln2O2CN2 (Ln=Ce, Pr, Nd, Sm, Eu, Gd). The presence of CN22− ions has been confirmed by infrared spectroscopy, with two characteristic peaks in the vicinity of 651 and 2075 cm−1.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 288 ◽  
Author(s):  
Angela Altomare ◽  
Rosanna Rizzi ◽  
Manuela Rossi ◽  
Asmaa El Khouri ◽  
Mohammed Elaatmani ◽  
...  

C a 2.90 M e 0.10 2 + ( P O 4 ) 2 (with Me = Mn, Ni, Cu) β-tricalcium phosphate (TCP) powders were synthesized by solid-state reaction at T = 1200 °C and investigated by means of a combination of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, and luminescence spectroscopy. SEM morphological analysis showed the run products to consist of sub spherical microcrystalline aggregates, while EDS semi-quantitative analysis confirmed the nominal Ca/Me composition. The unit cell and the space group were determined by X-ray powder diffraction data showing that all the compounds crystallize in the rhombohedral R3c whitlockite-type structure, with the following unit cell constants: a = b = 10.41014(19) Å, c = 37.2984(13) Å, and cell volume V = 3500.53(15) Å3 (Mn); a = b = 10.39447(10) Å, c = 37.2901(8) Å; V = 3489.22(9) Å3 (Ni); a = b = 10.40764(8) Å, c = 37.3158(6) Å, V = 3500.48(7) Å3 (Cu). The investigation was completed with the structural refinement by the Rietveld method. The FTIR spectra are similar to those of the end-member Ca β-tricalcium phosphate (TCP), in agreement with the structure determination, and show minor band shifts of the (PO4) modes with the increasing size of the replacing Me2+ cation. Luminescence spectra and decay curves revealed significant luminescence properties for Mn and Cu phases.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


Author(s):  
Rongqing Shang ◽  
An T. Nguyen ◽  
Allan He ◽  
Susan M. Kauzlarich

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.


2020 ◽  
Vol 9 (4) ◽  
pp. 1562-1568

The incorporation of magnesium in the synthetic apatite has been associated with the biomineralization process and osteoporosis therapy in humans and animals. β-tricalcium phosphate (β-TCP) is one of the most common bioceramics widely applied in bone cement and implants. In this work, Ca-deficient apatite (CDA) with a theoretical 0.08 Mg/(Ca+Mg) ratio was synthesized by the rapid reaction between Ca(OH)2, MgCl2.6H2O and H3PO4 at 40°C and the resultant powder calcined at 650 °C for 10h. X-ray powder diffraction analysis (XRD), in combination with the Rietveld method (Fullprof-suite), was employed for quantitative phase analysis and structural refinement. The results of XRD indicate that magnesium can substitute for calcium into a β-TCP structure inducing a reduction of the cell parameters and the compound crystallizes in the rhombohedral R3c structure, with the following unit cell constants: a = b = 10.3560 Å, c = 37.1718 Å, and cell volume V = 3452.44. The analysis indicated that the substitution of Mg2+ on the M(4) and M(5) sites were, approximately, 2.61 and 6.97 mol%, corresponding to the Ca2.72(MgIV0.07, MgV0.21)(PO4)2 stoichiometric formula and 0.09 Mg/(Ca+Mg) ratio.


2013 ◽  
Vol 28 (S1) ◽  
pp. S28-S31 ◽  
Author(s):  
L. Fu ◽  
Y.Q. Guo ◽  
S. Zheng

Cu(In,Ga)Se2 (CIGS) semiconductors were prepared by arc melting and the vacuum solid reaction. CIGS nanoparticles were synthesized by the mechanical alloy method. The influences of various ball-milling speeds on phase structures for CIGS nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystal structures and unit-cell parameters of CIGS nanoparticles were determined using TREOR program and the least squares method. A Rietveld structural refinement was used to determine the atomic occupations and atomic numbers of CIGS prepared under various ball-milling speeds. The least size of agglomerated CIGS nanoparticles should be around 200 nm. CIGS nanoparticles milled at various milling speeds with a tetragonal chalcopyrite structure were obtained according to XRD analyses. However, Ga content in CIGS depends on milling speeds. Based on the structural refinements, the unit-cell parameters are a = 5.693(8)–5.744(9) Å and c = 11.334(9)–11.524(4) Å with gallium content ranging from 0.3 to 0.5. The atomic occupations are corresponding to the 4a crystal site for Cu atoms, the 4b site for In and the 8d site for Se. Ga prefers to occupy the 4b crystal site.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Suli Wu ◽  
Yanhui Ning ◽  
Shufen Zhang

Novel chelating ligands are very significant for preparing nanocrystals with different morphologies and applications. In this paper, we directly introduced amine groups onto UCNPs by choosing a new chelating ligand tetraethylene pentamine (TEPA) to synthesisNaYF4:Yb, Er through hydrothermal method. The influences of rare earth concentration, the ratio of RE/TEPA, solvent composition, and reaction time on the morphology and fluorescence intensity of the as-preparedNaYF4:Yb, Er samples were systematically investigated and discussed. Field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), and upconversion luminescence spectroscopy were used to characterize the product. It was found that rare earth concentration, ratio of RE/TEPA, solvent composition, and reaction time were all responsible for the luminescent intensity and morphology.


2003 ◽  
Vol 36 (4) ◽  
pp. 1082-1084 ◽  
Author(s):  
V. Grover ◽  
S. N. Achary ◽  
A. K. Tyagi

Structural analysis of anion-rich C-type Gd2O3was carried by the Rietveld refinement of the powder X-ray diffraction data for compositions Gd0.8Ce0.2O1.60and Gd0.6Ce0.4O1.70. Both compounds have a body-centred cubic lattice (space groupIa\bar{3}, No. 206,Z= 32) with unit-cell parameters of 10.8488 (1) and 10.8542 (1) Å, respectively. Both of these compounds are iso-structural with the C-type rare earth oxides, with excess anions as required for charge balance. The structural analysis reveals that there are two different kinds of metal ion site, namely 8b(M1) and 24d(M2), and two different kinds of anion sites, namely 48e(O1) and 16c(O2). The excess anions occupy the 16c(xxx) sites. The two metal ions each form an approximately eightfold-coordination polyhedron with O1 and O2. The details of these two compositions are explained and compared with both the CeO2structure and the Gd2O3structure,i.e.the end member.


1998 ◽  
Vol 54 (4) ◽  
pp. 358-364 ◽  
Author(s):  
K. G. Hatzisymeon ◽  
S. C. Kokkou ◽  
A. N. Anagnostopoulos ◽  
P. I. Rentzeperis

A series of thallium ternary chalcogenides with the composition Tl2x In2(1−x)Se2, x = 0.2, 0.3,...0.9, have been studied by X-ray powder and, for some of them, single-crystal diffraction. They are tetragonal, space group I4/mcm, Z = 4, and isostructural with the binary semiconductor TlSe. Their crystal structures have been solved by direct methods and refined by the Rietveld method to a precision which is satisfactorily comparable to single-crystal results. As x is changed from x = 0.2 to x = 0.9 the unit-cell parameters and volume decrease or increase following Kurnakov's law, which is valid for solid solutions. Refined positional parameters of Se, In—Se and Tl—Se bond lengths vary with x also according to the same law. The distribution of In and Tl cations in 4(a) and 4(b) sites depends on the stoichiometry x and the crystals are composed of [In3+Se2]_{\infty}^- chains along the c axis in which InSe4 tetrahedra share edges; the chains are interconnected with Tl+(In+) ions.


2020 ◽  
Author(s):  
Daniela Novembre ◽  
Domingo Gimeno ◽  
Alessandro Del Vecchio

Abstract This work focuses on the hydrothermal synthesis of Na-P1 zeolite by using a kaolinite rock coming from Romana (Sassari, Italy). The kaolin is calcined at a temperature of 650 °C and then mixed with calculated quantities of NaOH. The synthesis runs are carried out at ambient pressure and at variable temperatures of 65 ° and 100 °C. For the first time compared to the past, the Na-P1 zeolite is synthesized without the use of additives and through a protocol that reduces both temperatures and synthesis times. The synthesis products are analysed by X-ray diffraction, high temperature X-ray diffraction, infrared spectroscopy, scanning electron microscopy and inductively coupled plasma optical emission spectrometry. The cell parameters are calculated using the Rietveld method. Density and specific surface area are also calculated. The absence of amorphous phases and impurities in synthetic powders is verified through quantitative phase analysis using the combined Rietveld and reference intensity ratio methods.The results make the experimental protocol very promising for an industrial transfer.


Sign in / Sign up

Export Citation Format

Share Document