scholarly journals HMM-Based Techniques for Speech Segments Extraction

2002 ◽  
Vol 10 (3) ◽  
pp. 221-239 ◽  
Author(s):  
Waleed H. Abdulla

The goal of the speech segments extraction process is to separate acoustic events of interest (the speech segment to be recognised) in a continuously recorded signal from other parts of the signal (background). The recognition rate of many voice command systems is very much dependent on speech segment extraction accuracy. This paper discusses two novel HMM based techniques that segregate a speech segment from its concurrent background. The first method can be reliably used in clean environments while the second method, which makes use of the wavelets denoising technique, is effective in noisy environments. These methods have been implemented and shown superiority over other popular techniques, thus, indicating that they have the potential to achieve greater levels of accuracy in speech recognition rates.

Kursor ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 67 ◽  
Author(s):  
Syahroni Hidayat

The Indonesian language is an agglutinative language which has complex suffixes and affixes attached on its root. For this reason there is a high possibility to recognize Indonesian speech based on its syllables. The syllable-based Indonesian speech recognition could reduce the database and recognize new Indonesian vocabularies which evolve as the result of language development. MFCC and WPT daubechies 3rd (DB3) and 7th (DB7) order methods are used in feature extraction process and HMM with Euclidean distance probability is applied for classification. The results shows that the best recognition rateis 75% and 70.8% for MFCC and WPT method respectively, which come from the testing using training data test. Meanwhile, for testing using external data test WPT method excel the MFCC method, where the best recognition rate is 53.1% for WPT and 47% for MFCC. For MFCC the accuracy increased asthe data length and the frame length increased. In WPT, the increase in accuracy is influenced by the length of data, type of the wavelet and decomposition level. It is also found that as the variation of state increased the recognition for both methods decreased.


2014 ◽  
Vol 571-572 ◽  
pp. 665-671 ◽  
Author(s):  
Sen Xu ◽  
Xu Zhao ◽  
Cheng Hua Duan ◽  
Xiao Lin Cao ◽  
Hui Yan Li ◽  
...  

As One of Features from other Languages, the Chinese Tone Changes of Chinese are Mainly Decided by its Vowels, so the Vowel Variation of Chinese Tone Becomes Important in Speech Recognition Research. the Normal Tone Recognition Ways are Always Based on Fundamental Frequency of Signal, which can Not Keep Integrity of Tone Signal. we Bring Forward to a Mathematical Morphological Processing of Spectrograms for the Tone of Chinese Vowels. Firstly, we will have Pretreatment to Recording Good Tone Signal by Using Cooledit Pro Software, and Converted into Spectrograms; Secondly, we will do Smooth and the Normalized Pretreatment to Spectrograms by Mathematical Morphological Processing; Finally, we get Whole Direction Angle Statistics of Tone Signal by Skeletonization way. the Neural Networks Stimulation Shows that the Speech Emotion Recognition Rate can Reach 92.50%.


2004 ◽  
Author(s):  
Martin Graciarena ◽  
Federico Cesari ◽  
Horacio Franco ◽  
Greg Myers ◽  
Cregg Cowan ◽  
...  

2018 ◽  
Vol 39 (04) ◽  
pp. 349-363 ◽  
Author(s):  
Eric Hoover ◽  
Pamela Souza

AbstractSubstantial loss of cochlear function is required to elevate pure-tone thresholds to the severe hearing loss range; yet, individuals with severe or profound hearing loss continue to rely on hearing for communication. Despite the impairment, sufficient information is encoded at the periphery to make acoustic hearing a viable option. However, the probability of significant cochlear and/or neural damage associated with the loss has consequences for sound perception and speech recognition. These consequences include degraded frequency selectivity, which can be assessed with tests including psychoacoustic tuning curves and broadband rippled stimuli. Because speech recognition depends on the ability to resolve frequency detail, a listener with severe hearing loss is likely to have impaired communication in both quiet and noisy environments. However, the extent of the impairment varies widely among individuals. A better understanding of the fundamental abilities of listeners with severe and profound hearing loss and the consequences of those abilities for communication can support directed treatment options in this population.


2020 ◽  
Author(s):  
chaofeng lan ◽  
yuanyuan Zhang ◽  
hongyun Zhao

Abstract This paper draws on the training method of Recurrent Neural Network (RNN), By increasing the number of hidden layers of RNN and changing the layer activation function from traditional Sigmoid to Leaky ReLU on the input layer, the first group and the last set of data are zero-padded to enhance the effective utilization of data such that the improved reduction model of Denoise Recurrent Neural Network (DRNN) with high calculation speed and good convergence is constructed to solve the problem of low speaker recognition rate in noisy environment. According to this model, the random semantic speech signal with a sampling rate of 16 kHz and a duration of 5 seconds in the speech library is studied. The experimental settings of the signal-to-noise ratios are − 10dB, -5dB, 0dB, 5dB, 10dB, 15dB, 20dB, 25dB. In the noisy environment, the improved model is used to denoise the Mel Frequency Cepstral Coefficients (MFCC) and the Gammatone Frequency Cepstral Coefficents (GFCC), impact of the traditional model and the improved model on the speech recognition rate is analyzed. The research shows that the improved model can effectively eliminate the noise of the feature parameters and improve the speech recognition rate. When the signal-to-noise ratio is low, the speaker recognition rate can be more obvious. Furthermore, when the signal-to-noise ratio is 0dB, the speaker recognition rate of people is increased by 40%, which can be 85% improved compared with the traditional speech model. On the other hand, with the increase in the signal-to-noise ratio, the recognition rate is gradually increased. When the signal-to-noise ratio is 15dB, the recognition rate of speakers is 93%.


2013 ◽  
Vol 6 (1) ◽  
pp. 266-271
Author(s):  
Anurag Upadhyay ◽  
Chitranjanjit Kaur

This paper addresses the problem of speech recognition to identify various modes of speech data. Speaker sounds are the acoustic sounds of speech. Statistical models of speech have been widely used for speech recognition under neural networks. In paper we propose and try to justify a new model in which speech co articulation the effect of phonetic context on speech sound is modeled explicitly under a statistical framework. We study speech phone recognition by recurrent neural networks and SOUL Neural Networks. A general framework for recurrent neural networks and considerations for network training are discussed in detail. SOUL NN clustering the large vocabulary that compresses huge data sets of speech. This project also different Indian languages utter by different speakers in different modes such as aggressive, happy, sad, and angry. Many alternative energy measures and training methods are proposed and implemented. A speaker independent phone recognition rate of 82% with 25% frame error rate has been achieved on the neural data base. Neural speech recognition experiments on the NTIMIT database result in a phone recognition rate of 68% correct. The research results in this thesis are competitive with the best results reported in the literature. 


2020 ◽  
Vol 9 (1) ◽  
pp. 1022-1027

Driving a vehicle or a car has become tedious job nowadays due to heavy traffic so focus on driving is utmost important. This makes a scope for automation in Automobiles in minimizing human intervention in controlling the dashboard functions such as Headlamps, Indicators, Power window, Wiper System, and to make it possible this is a small effort from this paper to make driving distraction free using Voice controlled dashboard. and system proposed in this paper works on speech commands from the user (Driver or Passenger). As Speech Recognition system acts Human machine Interface (HMI) in this system hence this system makes use of Speaker recognition and Speech recognition for recognizing the command and recognize whether the command is coming from authenticated user(Driver or Passenger). System performs Feature Extraction and extracts speech features such Mel Frequency Cepstral Coefficients(MFCC),Power Spectral Density(PSD),Pitch, Spectrogram. Then further for Feature matching system uses Vector Quantization Linde Buzo Gray(VQLBG) algorithm. This algorithm makes use of Euclidean distance for calculating the distance between test feature and codebook feature. Then based on speech command recognized controller (Raspberry Pi-3b) activates the device driver for motor, Solenoid valve depending on function. This system is mainly aimed to work in low noise environment as most speech recognition systems suffer when noise is introduced. When it comes to speech recognition acoustics of the room matters a lot as recognition rate differs depending on acoustics. when several testing and simulation trials were taken for testing, system has speech recognition rate of 76.13%. This system encourages Automation of vehicle dashboard and hence making driving Distraction Free.


Sign in / Sign up

Export Citation Format

Share Document