scholarly journals Frequency Domain Analysis of Continuous Systems with Viscous Generalized Damping

2004 ◽  
Vol 11 (3-4) ◽  
pp. 243-259 ◽  
Author(s):  
S. Sorrentino ◽  
A. Fasana ◽  
S. Marchesiello

This paper deals with the effects of generalized damping distributions on vibrating linear systems. The attention is focused on continuous linear systems with distributed and possibly non-proportional viscous damping, which are studied in terms of modal analysis, defining and discussing the orthogonality properties of their eigenfunctions.Exact expressions of the frequency response functions obtained by direct integration of the equations of motion are compared with the analogous formulas based on the superposition of modes. In addition, approximate expressions of the frequency response functions of both continuous and discrete (finite element models) systems in terms of their undamped eigenfunctions/eigenvectors are also considered and discussed.The presented methods are explained, compared and validated by means of numerical examples on a clamped-free Euler-Bernoulli beam.

Author(s):  
W. Schünemann ◽  
R. Schelenz ◽  
G. Jacobs ◽  
W. Vocaet

AbstractThe aim of a transfer path analysis (TPA) is to view the transmission of vibrations in a mechanical system from the point of excitation over interface points to a reference point. For that matter, the Frequency Response Functions (FRF) of a system or the Transmissibility Matrix is determined and examined in conjunction with the interface forces at the transfer path. This paper will cover the application of an operational TPA for a wind turbine model. In doing so the path contribution of relevant transfer paths are made visible and can be optimized individually.


1998 ◽  
Vol 120 (2) ◽  
pp. 509-516 ◽  
Author(s):  
J. A. Morgan ◽  
C. Pierre ◽  
G. M. Hulbert

This paper demonstrates how to calculate Craig-Bampton component mode synthesis matrices from measured frequency response functions. The procedure is based on a modified residual flexibility method, from which the Craig-Bampton CMS matrices are recovered, as presented in the companion paper, Part I (Morgan et al., 1998). A system of two coupled beams is analyzed using the experimentally-based method. The individual beams’ CMS matrices are calculated from measured frequency response functions. Then, the two beams are analytically coupled together using the test-derived matrices. Good agreement is obtained between the coupled system and the measured results.


Sign in / Sign up

Export Citation Format

Share Document