scholarly journals Fine Structure of Dark Energy and New Physics

2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Vishnu Jejjala ◽  
Michael Kavic ◽  
Djordje Minic

Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of dark energy and constrain the distribution function.

2017 ◽  
Vol 32 (06n07) ◽  
pp. 1750037 ◽  
Author(s):  
Yugo Abe ◽  
Masaatsu Horikoshi ◽  
Yoshiharu Kawamura

We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the classical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.


2010 ◽  
Vol 19 (04) ◽  
pp. 507-512 ◽  
Author(s):  
E. MENEGONI ◽  
S. PANDOLFI ◽  
S. GALLI ◽  
M. LATTANZI ◽  
A. MELCHIORRI

We discuss the cosmological constraints on the dark energy equation of state in the presence of primordial variations in the fine structure constant. We find that the constraints from CMB data alone on w and the Hubble constant are much weaker when variations in the fine structure constant are permitted. Vice versa, constraints on the fine structure constant are relaxed by more than 50% when dark energy models different from a cosmological constant are considered.


2020 ◽  
Author(s):  
Stephane Maes

In a multi-fold universe, gravity emerges from entanglement and spacetime is discrete, with a fractal structure based on random walk and a non-commutative geometry. When random walk is combined with maximal particle generations, exponential expansion can automatically takes place. Away from maximal generation or in an already concretized spacetime, random walk accounts for a constant or slowing down expansion. Meanwhile, the multi-fold mechanisms also implies a constant expansion potential, adding a force to the expansion of the universe, thanks to uncertainties. It explain the constant acceleration of the universe expansion with a cosmological constant that is not the vacuum energy density but can be way smaller.It may contribute to addressing problems like the absence of any explanation of dark energy, the embarrassing orders of magnitude of discrepancies between vacuum energy and the cosmological constant predicted by conventional Physics; issues that are among Today’s biggest mysteries of the universe. These explanations do not require New Physics beyond the Standard Model and the Standard Cosmology Model.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 463-472 ◽  
Author(s):  
C P Burgess

This article briefly summarizes and reviews the motivations for — and the present status of — the proposal that the small size of the observed Dark Energy density can be understood in terms of the dynamical relaxation of two large extra dimensions within a supersymmetric higher dimensional theory.PACS Nos.: 31.15.Pf, 31.30.Jv, 32.10.Hq


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2181-2183 ◽  
Author(s):  
HYUN SEOK YANG

We address issues on the origin of gravity and the dark energy (or the cosmological constant) from the perspectives of emergent gravity. We discuss how the emergent gravity reveals a noble, radically different picture about the origin of spacetime, which is crucial for a tenable solution of the cosmological constant problem. In particular, the emergent gravity naturally explains the dynamical origin of flat spacetime, which is absent in Einstein gravity.


Sign in / Sign up

Export Citation Format

Share Document