scholarly journals Oscillatory Behavior in Linear Difference Equations under Unmodeled Dynamics and Parametrical Errors

2007 ◽  
Vol 2007 ◽  
pp. 1-18 ◽  
Author(s):  
M. De la Sen

This paper investigates the presence of oscillating solutions in time-varying difference equations even in the case when there exist parametrical errors (i.e., errors in the sequences defining their coefficients) and/or unmodeled dynamics, namely, the current order is unknown and greater than the nominal known order. The formulation is related to the concepts of conjugacy, disconjugacy, positivity, and generalized zeros and general conditions of oscillation are obtained both over particular intervals and for the whole solution. Some results concerned with the presence of stable oscillations are also presented.

1982 ◽  
Vol 72 (2) ◽  
pp. 615-636
Author(s):  
Robert F. Nau ◽  
Robert M. Oliver ◽  
Karl S. Pister

Abstract This paper describes models used to simulate earthquake accelerograms and analyses of these artificial accelerogram records for use in structural response studies. The artificial accelerogram records are generated by a class of linear linear difference equations which have been previously identified as suitable for describing ground motions. The major contributions of the paper are the use of Kalman filters for estimating time-varying model parameters, and the development of an effective nonparametric method for estimating the variance envelopes of the accelerogram records.


Author(s):  
Piotr W. Ostalczyk

In this paper we explore the linear difference equations with fractional orders being a function of time. A description of closed-loop dynamical systems described by such equations is proposed. In the numerical example a simple control strategy based on time-varying fractional orders is presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tuğba Yalçın Uzun

AbstractIn this paper, we study the oscillation behavior for higher order nonlinear Hilfer fractional difference equations of the type $$\begin{aligned}& \Delta _{a}^{\alpha ,\beta }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr) =\omega (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr),\quad x\in \mathbb{N}_{a+n-\alpha }, \\& \Delta _{a}^{k-(n-\gamma )}y(x) \big|_{x=a+n-\gamma } = y_{k}, \quad k= 0,1,\ldots,n, \end{aligned}$$ Δ a α , β y ( x ) + f 1 ( x , y ( x + α ) ) = ω ( x ) + f 2 ( x , y ( x + α ) ) , x ∈ N a + n − α , Δ a k − ( n − γ ) y ( x ) | x = a + n − γ = y k , k = 0 , 1 , … , n , where $\lceil \alpha \rceil =n$ ⌈ α ⌉ = n , $n\in \mathbb{N}_{0}$ n ∈ N 0 and $0\leq \beta \leq 1$ 0 ≤ β ≤ 1 . We introduce some sufficient conditions for all solutions and give an illustrative example for our results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Stevo Stević ◽  
Bratislav Iričanin ◽  
Witold Kosmala ◽  
Zdeněk Šmarda

Abstract It is known that every solution to the second-order difference equation $x_{n}=x_{n-1}+x_{n-2}=0$ x n = x n − 1 + x n − 2 = 0 , $n\ge 2$ n ≥ 2 , can be written in the following form $x_{n}=x_{0}f_{n-1}+x_{1}f_{n}$ x n = x 0 f n − 1 + x 1 f n , where $f_{n}$ f n is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document