scholarly journals Rough Sets Data Analysis in Knowledge Discovery: A Case of Kuwaiti Diabetic Children Patients

2008 ◽  
Vol 2008 ◽  
pp. 1-13 ◽  
Author(s):  
Aboul ella Hassanien ◽  
Mohamed E. Abdelhafez ◽  
Hala S. Own

The main goal of this study is to investigate the relationship between psychosocial variables and diabetic children patients and to obtain a classifier function with which it was possible to classify the patients on the basis of assessed adherence level. The rough set theory is used to identify the most important attributes and to induce decision rules from 302 samples of Kuwaiti diabetic children patients aged 7–13 years old. To increase the efficiency of the classification process, rough sets with Boolean reasoning discretization algorithm is introduced to discretize the data, then the rough set reduction technique is applied to find all reducts of the data which contains the minimal subset of attributes that are associated with a class label for classification. Finally, the rough sets dependency rules are generated directly from all generated reducts. Rough confusion matrix is used to evaluate the performance of the predicted reducts and classes. A comparison between the obtained results using rough sets with decision tree, neural networks, and statistical discriminate analysis classifier algorithms has been made. Rough sets show a higher overall accuracy rates and generate more compact rules.

Author(s):  
Benjamin Griffiths

Rough Set Theory (RST), since its introduction in Pawlak (1982), continues to develop as an effective tool in data mining. Within a set theoretical structure, its remit is closely concerned with the classification of objects to decision attribute values, based on their description by a number of condition attributes. With regards to RST, this classification is through the construction of ‘if .. then ..’ decision rules. The development of RST has been in many directions, amongst the earliest was with the allowance for miss-classification in the constructed decision rules, namely the Variable Precision Rough Sets model (VPRS) (Ziarko, 1993), the recent references for this include; Beynon (2001), Mi et al. (2004), and Slezak and Ziarko (2005). Further developments of RST have included; its operation within a fuzzy environment (Greco et al., 2006), and using a dominance relation based approach (Greco et al., 2004). The regular major international conferences of ‘International Conference on Rough Sets and Current Trends in Computing’ (RSCTC, 2004) and ‘International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing’ (RSFDGrC, 2005) continue to include RST research covering the varying directions of its development. This is true also for the associated book series entitled ‘Transactions on Rough Sets’ (Peters and Skowron, 2005), which further includes doctoral theses on this subject. What is true, is that RST is still evolving, with the eclectic attitude to its development meaning that the definitive concomitant RST data mining techniques are still to be realised. Grzymala-Busse and Ziarko (2000), in a defence of RST, discussed a number of points relevant to data mining, and also made comparisons between RST and other techniques. Within the area of data mining and the desire to identify relationships between condition attributes, the effectiveness of RST is particularly pertinent due to the inherent intent within RST type methodologies for data reduction and feature selection (Jensen and Shen, 2005). That is, subsets of condition attributes identified that perform the same role as all the condition attributes in a considered data set (termed ß-reducts in VPRS, see later). Chen (2001) addresses this, when discussing the original RST, they state it follows a reductionist approach and is lenient to inconsistent data (contradicting condition attributes - one aspect of underlying uncertainty). This encyclopaedia article describes and demonstrates the practical application of a RST type methodology in data mining, namely VPRS, using nascent software initially described in Griffiths and Beynon (2005). The use of VPRS, through its relative simplistic structure, outlines many of the rudiments of RST based methodologies. The software utilised is oriented towards ‘hands on’ data mining, with graphs presented that clearly elucidate ‘veins’ of possible information identified from ß-reducts, over different allowed levels of missclassification associated with the constructed decision rules (Beynon and Griffiths, 2004). Further findings are briefly reported when undertaking VPRS in a resampling environment, with leave-one-out and bootstrapping approaches adopted (Wisnowski et al., 2003). The importance of these results is in the identification of the more influential condition attributes, pertinent to accruing the most effective data mining results.


Author(s):  
Malcolm J. Beynon ◽  
Benjamin Griffiths

This chapter considers, and elucidates, the general methodology of rough set theory (RST), a nascent approach to rule based classification associated with soft computing. There are two parts of the elucidation undertaken in this chapter, firstly the levels of possible pre-processing necessary when undertaking an RST based analysis, and secondly the presentation of an analysis using variable precision rough sets (VPRS), a development on the original RST that allows for misclassification to exist in the constructed “if … then …” decision rules. Throughout the chapter, bespoke software underpins the pre-processing and VPRS analysis undertaken, including screenshots of its output. The problem of US bank credit ratings allows the pertinent demonstration of the soft computing approaches described throughout.


2012 ◽  
Vol 433-440 ◽  
pp. 6319-6324 ◽  
Author(s):  
Hai Ying Kang ◽  
Ren Fa Shen ◽  
Yan Jie Qi ◽  
Wen Yan ◽  
Hai Qi Zheng

The diagnosis of compound-fault is always a difficult point, and there is not an effective method in equipment diagnosis field. Rough set theory is a relatively new soft computing tool to deal with vagueness and uncertainty. Condition attribute reduce algorithm is the key point of rough set research. However, it has been proved that finding the best reduction is the NP-hard problem. For the purpose of getting the reduction of systems effectively, an improved algorithm is put forward. The worst Fisher criterion was adopted as heuristic information to improve the searching efficiency and Max-Min Ant System was selected. Simplify the fault diagnosis decision table, then clear and concise decision rules can be obtained by rough sets theory. This method raises the accuracy and efficiency of fault diagnosis of bearing greatly.


2011 ◽  
pp. 38-69 ◽  
Author(s):  
Hung Son Nguyen

This chapter presents the Boolean reasoning approach to problem solving and its applications in Rough sets. The Boolean reasoning approach has become a powerful tool for designing effective and accurate solutions for many problems in decision-making, approximate reasoning and optimization. In recent years, Boolean reasoning has become a recognized technique for developing many interesting concept approximation methods in rough set theory. This chapter presents a general framework for concept approximation by combining the classical Boolean reasoning method with many modern techniques in machine learning and data mining. This modified approach - called “the approximate Boolean reasoning” methodology - has been proposed as an even more powerful tool for problem solving in rough set theory and its applications in data mining. Through some most representative applications in many KDD problems including feature selection, feature extraction, data preprocessing, classification of decision rules and decision trees, association analysis, the author hopes to convince that the proposed approach not only maintains all the merits of its antecedent but also owns the possibility of balancing between quality of the designed solution and its computational time.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hui Li ◽  
Yanfang Liu ◽  
William Zhu

Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based on a tolerance relation. First, a family of sets are constructed through the lower approximation of a tolerance relation and they are proved to satisfy the circuit axioms of matroids. Thus we establish a matroid with the family of sets as its circuits. Second, we study the properties of the matroid including the base and the rank function. Moreover, we investigate the relationship between the upper approximation operator based on a tolerance relation and the closure operator of the matroid induced by the tolerance relation. Finally, from a tolerance relation, we can get a matroid of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.


Author(s):  
S. Arjun Raj ◽  
M. Vigneshwaran

In this article we use the rough set theory to generate the set of decision concepts in order to solve a medical problem.Based on officially published data by International Diabetes Federation (IDF), rough sets have been used to diagnose Diabetes.The lower and upper approximations of decision concepts and their boundary regions have been formulated here.


Author(s):  
Yanfang Liu ◽  
Hong Zhao ◽  
William Zhu

Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a generalization of linear algebra and graph theory. Recently, a matroidal structure of rough sets is established and applied to the problem of attribute reduction which is an important application of rough set theory. In this paper, we propose a new matroidal structure of rough sets and call it a parametric matroid. On the one hand, for an equivalence relation on a universe, a parametric set family, with any subset of the universe as its parameter, is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore a matroid is generated, and we call it a parametric matroid of the rough set. Through the lower approximation operator, three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, partition-circuit matroids are well studied through the lower approximation number, and then we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.


Author(s):  
B. K. Tripathy

Granular Computing has emerged as a framework in which information granules are represented and manipulated by intelligent systems. Granular Computing forms a unified conceptual and computing platform. Rough set theory put forth by Pawlak is based upon single equivalence relation taken at a time. Therefore, from a granular computing point of view, it is single granular computing. In 2006, Qiang et al. introduced a multi-granular computing using rough set, which was called optimistic multigranular rough sets after the introduction of another type of multigranular computing using rough sets called pessimistic multigranular rough sets being introduced by them in 2010. Since then, several properties of multigranulations have been studied. In addition, these basic notions on multigranular rough sets have been introduced. Some of these, called the Neighborhood-Based Multigranular Rough Sets (NMGRS) and the Covering-Based Multigranular Rough Sets (CBMGRS), have been added recently. In this chapter, the authors discuss all these topics on multigranular computing and suggest some problems for further study.


2013 ◽  
pp. 1225-1251
Author(s):  
Chun-Che Huang ◽  
Tzu-Liang (Bill) Tseng ◽  
Hao-Syuan Lin

Patent infringement risk is a significant issue for corporations due to the increased appreciation of intellectual property rights. If a corporation gives insufficient protection to its patents, it may loss both profits from product, and industry competitiveness. Many studies on patent infringement have focused on measuring the patent trend indicators and the patent monetary value. However, very few studies have attempted to develop a categorization mechanism for measuring and evaluating the patent infringement risk, for example, the categorization of the patent infringement cases, then to determine the significant attributes and introduce the infringement decision rules. This study applies Rough Set Theory (RST), which is suitable for processing qualitative information to induce rules to derive significant attributes for categorization of the patent infringement risk. Moreover, through the use of the concept hierarchy and the credibility index, it can be integrated with RST and then enhance application of the finalized decision rules.


Author(s):  
Yasuo Kudo ◽  
Tetsuya Murai

This paper focuses on rough set theory which provides mathematical foundations of set-theoretical approximation for concepts, as well as reasoning about data. Also presented in this paper is the concept of relative reducts which is one of the most important notions for rule generation based on rough set theory. In this paper, from the viewpoint of approximation, the authors introduce an evaluation criterion for relative reducts using roughness of partitions that are constructed from relative reducts. The proposed criterion evaluates each relative reduct by the average of coverage of decision rules based on the relative reduct, which also corresponds to evaluate the roughness of partition constructed from the relative reduct,


Sign in / Sign up

Export Citation Format

Share Document