scholarly journals Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

2009 ◽  
Vol 2009 ◽  
pp. 1-20 ◽  
Author(s):  
Maksim Skorobogatiy

We review application of microstructured and photonic bandgap fibers for designing resonant optical sensors of changes in the value of analyte refractive index. This research subject has recently invoked much attention due to development of novel fiber types, as well as due to development of techniques for the activation of fiber microstructure with functional materials. Particularly, we consider two sensors types. The first sensor type employs hollow core photonic bandgap fibers where core guided mode is confined in the analyte filled core through resonant effect in the surrounding periodic reflector. The second sensor type employs metalized microstructured or photonic bandgap waveguides and fibers, where core guided mode is phase matched with a plasmon propagating at the fiber/analyte interface. In resonant sensors one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte refractive index (10−6–10−4 RIU), as well as in the imaginary part of the analyte refractive index in the vicinity of absorption lines. In the following we detail various resonant sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for bio- and chemical sensing applications. Sensor designs considered in this review span spectral operation regions from the visible to terahertz.

2010 ◽  
Vol 18 (9) ◽  
pp. 8906 ◽  
Author(s):  
Vincent Pureur ◽  
Jonathan C. Knight ◽  
Boris T. Kuhlmey

2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 112
Author(s):  
Qais M. Al-Bataineh ◽  
Mahmoud Telfah ◽  
Ahmad A. Ahmad ◽  
Ahmad M. Alsaad ◽  
Issam A. Qattan ◽  
...  

We report the synthesis and characterization of pure ZnO, pure CeO2, and ZnO:CeO2 mixed oxide thin films dip-coated on glass substrates using a sol-gel technique. The structural properties of as-prepared thin film are investigated using the XRD technique. In particular, pure ZnO thin film is found to exhibit a hexagonal structure, while pure CeO2 thin film is found to exhibit a fluorite cubic structure. The diffraction patterns also show the formation of mixed oxide materials containing well-dispersed phases of semi-crystalline nature from both constituent oxides. Furthermore, optical properties of thin films are investigated by performing UV–Vis spectrophotometer measurements. In the visible region, transmittance of all investigated thin films attains values as high as 85%. Moreover, refractive index of pure ZnO film was found to exhibit values ranging between 1.57 and 1.85 while for CeO2 thin film, it exhibits values ranging between 1.73 and 2.25 as the wavelength of incident light decreases from 700 nm to 400 nm. Remarkably, refractive index of ZnO:CeO2 mixed oxide-thin films are tuned by controlling the concentration of CeO2 properly. Mixed oxide-thin films of controllable refractive indices constitute an important class of smart functional materials. We have also investigated the optoelectronic and dispersion properties of ZnO:CeO2 mixed oxide-thin films by employing well-established classical models. The melodramatic boost of optical and optoelectronic properties of ZnO:CeO2 mixed oxide thin films establish a strong ground to modify these properties in a skillful manner enabling their use as key potential candidates for the fabrication of scaled optoelectronic devices and thin film transistors.


2011 ◽  
Vol 700 ◽  
pp. 145-149 ◽  
Author(s):  
Tadafumi Adschiri ◽  
S. Takami ◽  
K. Minami ◽  
T. Yamagata ◽  
K. Miyata ◽  
...  

Various composite materials have been developed, but in many cases problems arise due to the combined materials such as fabrication becoming difficult because of the significant increase in viscosity, and transparency of the polymer is sacrificed. These issues can be overcome by controlling the nanointerface; however, this is considered as a difficult task since nanoparticles (NPs) easily aggregate in polymer matrices because of their high surface energy. Organic functionalization of inorganic NPs is required to increase affinity between NPs and polymers. For fabricating multi-functional materials, we proposed a new method to synthesize organic modified NPs by using supercritical water. Because organic molecules and metal salt aqueous solutions are miscible in supercritical water and water molecules serve as acid/base catalysts for the reactions, hybrid organic/inorganic NPs can be synthesized under the supercritical condition. The hybrid NPs show high affinity for the organic solvent and the polymer matrix, which leads to the fabrication of these super hybrid NPs. How to release the heat from the devices is the bottle neck of developing the future power devices, and thus nanohybrid materials of polymer and ceramics are required to achieve both high thermal conductivity and easy thin film flexible fabrication, namely trade-off functions. Surface modification of the BN particles via supercritical hydrothermal synthesis improves the affinity between BN and the polymers. This increases the BN loading ratio in the polymers, thus resulting in high thermal conductivity. Transparent dispersion of high refractive index NPs, such as TiO2 and ZrO2, in the polymers is required to fabricate optical materials. By adjusting the affinity between NPs and the polymers, we could fabricate super hybrid nanomaterials, which have flexiblility and high refractive index and transparency.


Sign in / Sign up

Export Citation Format

Share Document