scholarly journals Resistivity Study of Shallow Aquifers in theParts of Southern Ukanafun Local Government Area, Akwa Ibom State, Nigeria

2010 ◽  
Vol 7 (3) ◽  
pp. 693-700 ◽  
Author(s):  
N. J. George ◽  
A. E. Akpan ◽  
I. B. Obot

A resistivity study by vertical electrical sounding (VES) employing the Schlumberger electrode configuration has been used to delineate shallow aquifers in some villages in SouthernUkanafunLocal Government Area of Akwa Ibom State, Southern Nigeria. The information realized from the resistivity data and nearby logged boreholes show that the depths penetrated by currents were all sandy formations with various thicknesses. However, the main aquifers comprise within the maximum current penetration, very coarse – grained (gravelly) sand and fine sand with resistivity in the ranges of 4680-30700 Ωm and 207-2530 Ωm and thickness in the ranges of 43-63 m and 18-40 m respectively. The aquifers with minor hydraulic gradient are separated by thin beds of clay according to lithology logs and these beds were masked in the sounding data due to the principle of suppression.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
J. Ibuot ◽  
G. Akpabio ◽  
N. George

AbstractVertical electrical sounding (VES), employing a Schlumberger electrode configuration, was used to investigate the sediments and aquifer repositories in Itu Local Government Area of Akwa Ibom state, southern Nigeria. This was done in sixteen (16) locations/communities with the maximum current electrode spread ranging between 800–1000m. The field data were interpreted using forward and iterative least square inversion modeling, which gives a resolution with 3–5 geoelectric layers. The observed frequencies in curve types include 31.25% of AKH, 18.8% of AAK and HK and 6.25% of K, QHK, AKH, KA and KHQ, respectively. These sets of curves show a wide range of variabilities in resistivities between and within the layers penetrated by current. The presence of K and H curve types in the study area indicates the alteration of the geomaterials with limited hydrologic significance to the prolific groundwater repository. A correlation of the constrained nearby borehole lithology logs with the VES results shows that the layers were all sandy formations (fine and well sorted sands to gravelly sands or medium to coarse-grained sands as described by nearby lithology logs) with some wide ranges of electrical resistivity values and thicknesses caused by electrostratigraphic inhomogeneity. The geologic topsoil (motley topsoil) is generally porous and permeable and as such the longitudinal conductance (S) values for the covering/protective layer is generally less than unity of Siemens (S < 1Ω−1), the value considered for efficient protection of the underlying aquifers by the topmost and overlying layer. The spatial orientations and the leveling patterns of the most economically viable potential groundwater repository within the maximum current electrode separations has been delineated in 2-D and 3-D contoured maps. The estimated depth range for the desired groundwater repository is 32.6–113.1m and its average depth value is 74.30m. The thickness of this layer ranges from 27.9–103m while its average depth has been evaluated to be 63.02m. Also, its resistivity range and average value have been estimated to be 507–5612m and 3365.125Ωm



2010 ◽  
Vol 7 (3) ◽  
pp. 1018-1022 ◽  
Author(s):  
U. F. Evans ◽  
N. J. George ◽  
A. E. Akpan ◽  
I. B. Obot ◽  
A. N. Ikot

Resistivity sounding method using Schlumberger electrodes configuration was employed to investigate the goe-eletrical properties of the subsurface in parts of Uyo Local Government Area of Akwa Ibom State, Nigeria. Within the maximum electrode spread, the area studied show sandy beds with five layers of various thicknesses. The subsurface sediment harbours a thick aquifer buried in 20.0 m from the surface of the earth and it is exposed to earth surface at VES 13 and 14. The resistivity range for the aquifer layer is between 1,050 - 9,300 Ωm and thickness is above 80.0 m.



2011 ◽  
Vol 3 (4) ◽  
Author(s):  
Obianwu Victor ◽  
Chimezie Innocent ◽  
Akpan Anthony ◽  
George Jimmy

AbstractTwenty seven vertical electrical sounding (VES) profiles surrounding four known traverses were obtained in Ngor-Okpala local government area of Imo state to examine the subsurface geomaterials and the associated groundwater potential. The VES data, constrained by borehole data, provided useful information about the subsurface hydrogeologic and lithologic conditions. From the validated interpretation, the area assessed has loamy soil, medium grained sands, well-sorted medium-grained/gravelly sands and river sand as the lithologic succession from top to the bottom of the depth penetrated. The aquifers in the area were found in the medium-grained sands and well-sorted medium-coarse-grained sands. The aquifer depth for all-season groundwater that would be devoid of draw-down can be found at a depth range of 42–50 m. The resistivity maps of selected depths exhibit sharp resistivity changes at depth due mainly to undulating subsurface topography. A map of the distribution of the kσ-values shows that good quality groundwater can be found in most parts of the area.



2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
N. J. George ◽  
E. U. Nathaniel ◽  
S. E. Etuk

The application of geophysical method employing vertical electrical sounding (VES) method in combination with laboratory analysis of aquifer sediments has been used to access the economically accessible groundwater reserve and its protective capacity in some parts of Eastern Obolo Local Government area, the eastern region of the Nigerian Niger Delta. Schlumberger electrode configuration was used to sound twelve VES to occupy the areas that have borehole locations and accessibility for the spread of current electrodes to at least 1000 m. Based on the results, the safe and economic aquifer potential has groundwater reserve of about 168480558±18532861 m3. The desired aquifer thickness and its depth of burial have average value of 52.02 m and 73.14 m, respectively. The area has a fair protective capacity. This is indicated by 58.33% weak, 16.67% moderate, and 25% good protective capacity for the area. This study was done in one of the oil cities, where contaminated Salt River water is used as the major source of water for domestic uses and it is believed that the settlers will appropriate this result and sue for safe groundwater at the indicated depths.







Sign in / Sign up

Export Citation Format

Share Document