scholarly journals Immature Oocytes in “Apparent Empty Follicle Syndrome”: A Case Report

2010 ◽  
Vol 2010 ◽  
pp. 1-3 ◽  
Author(s):  
Teraporn Vutyavanich ◽  
Waraporn Piromlertamorn ◽  
Jason Ellis

Empty follicle syndrome (EFS) is a condition in which no oocytes are obtained after an apparently successful ovarian stimulation. Genuine EFS (GEFS) is differentiated from false EFS by an optimal level of human chorionic gonadotropin on the day of oocyte retrieval. Some believe that GEFS does not exist and that it is only a reflection of the margin of error attendant upon the procedure of oocyte aspiration. Others believe that GEFS is caused by dysfunctional folliculogenesis, resulting in early atresia of oocytes. In this report, we present a case of apparent GEFS, in which immature oocytes were identified after filtration of follicular aspirates. Our findings suggest that delayed maturation of oocyte cumulus complexes in response to HCG might be an etiologic mechanism in some cases of GEFS. This creates a situation similar to the aspiration of immature follicles, where germinal vesicle-stage oocytes with dense scanty cumulus cells are often difficult to identify under a dissecting microscope.

1998 ◽  
Vol 69 (1) ◽  
pp. 138-139 ◽  
Author(s):  
Hassan Ali Hassan ◽  
Hisham Ali Saleh ◽  
Omar Khalil ◽  
Iman Baghdady ◽  
Inas Ismaiel

Zygote ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 11-18 ◽  
Author(s):  
S. Bilotto ◽  
R. Boni ◽  
G.L. Russo ◽  
M.B. Lioi

SummarySeveral genetic and physiological factors increase the risk of DNA damage in mammalian oocytes. Two critical events are: (i) meiosis progression, from maturation to fertilization, due to extensive chromatin remodelling during genome decondensation; and (ii) aging, which is associated with a progressive oxidative stress. In this work, we studied the transcriptional patterns of three genes, RAD51, APEX-1 and MLH1, involved in DNA repair mechanisms. The analyses were performed by real-time quantitative PCR (RT-qPCR) in immature and in vitro matured oocytes collected from 17 ± 3-month-old heifers and 94 ± 20-month-old cows. Batches of 30–50 oocytes for each group (three replicates) were collected from ovarian follicles of slaughtered animals. The oocytes were freed from cumulus cells at the time of follicle removal, or after in vitro maturation (IVM) carried out in M199 supplemented with 10% fetal calf serum, 10 IU luteinising hormone (LH)/ml, 0.1 IU follicle-stimulating hormone (FSH)/ml and 1 μg 17β-oestradiol/ml. Total RNA was extracted by Trizol method. The expression of bovine GAPDH gene was used as the internal standard, while primers for bovine RAD51, APEX-1 and MLH1 genes were designed from DNA sequences retrieved from GenBank. Results obtained indicate a clear up-regulation of RAD51, APEX-1 and MLH1 genes after IVM, ranging between two- and four-fold compared with germinal vesicle (GV) oocytes. However, only RAD51 showed a significant transcript increase between the immature oocytes collected from young or old individuals. This finding highlights RAD51 as a candidate gene marker for discriminating bovine immature oocytes in relation to the donor age.


Author(s):  
Tulay Irez ◽  
Sinem Ercan Dogan ◽  
Enver Ciraci ◽  
Saadet Busra Aksoyer ◽  
Muhammet Sait Toprak ◽  
...  

<p><strong>OBJECTIVE:</strong> In this study, we aimed to investigate the role of the cumulus cell’s apoptosis parameter in the maturation of immature rescue oocytes. </p><p><strong>STUDY DESIGN:</strong> In this experimental study, donated immature germinal vesicle oocytes were cultured for, in vitro maturation, embryo development in matured germinal vesicle oocytes were compared with apoptotic properties of cumulus cells. </p><p><strong>RESULTS:</strong> In all of the immature oocytes after oocyte in vitro maturation, the maturation rate has been observed as 56.1% and 2PN rate as 63.0%. Afterin vitro maturation of germinal vesicle oocytes, there was no difference in apoptosis rates of the cumulus cells between mature and immature oocytes (p&gt; 0.05). The ratio of 2PN in matured germinal vesicle oocytes showing embryo development was 35.4%. A positive correlation was found between luteinizing hormone values on day 3 and E2 values during HCG days during oocyte maturation and embryo development (p=0.021, p=0.020). In addition, it has been observed that the germinal vesicle oocytes, which have completed their maturation and developed into embryos, have high E2 values during HCG days (p=0.020).</p><p><strong>CONCLUSION:</strong> In our study, it has been demonstrated that in vitro maturation in rescue oocytes from stimulated cycles, embryo development potential could not be explained by the apoptosis parameter.</p>


2015 ◽  
Vol 27 (1) ◽  
pp. 226 ◽  
Author(s):  
S. Uzbekova ◽  
L. Sanchez-Lazo ◽  
A. Desmachais ◽  
V. Maillard ◽  
S. Elis

Oocyte maturation relies on energy from different nutrients, including fatty acids (FA). Cumulus cells (CC) are metabolically coupled with enclosed oocyte and active FA metabolism occurs in both compartments. Excess of lipids in oocyte environment alters its developmental competence. Lipid droplets (LD), mainly composed of triacylglycerides (TG), are formed inside of CC and in oocyte to store lipids. Liberation of free FA from TG requires lipolysis, which is catalyzed by lipases and involves FA-binding proteins (FABP) and perilipins (PLIN), which interact at the surface of LD as shown in lipogenic tissues. The objective was to elucidate the main factors involved in lipolysis in bovine cumulus-oocyte complex (COC) during oocyte maturation. Gene expression before and after maturation was analysed in CC by microarray hybridization and validated by real time RT-PCR; proteins were detected by Western blot and immunofluorescence. For statistics, ANOVA and Mann-Whitney (M-W) tests were used. In CC, adipose triglyceride lipase PNPLA2, lipoprotein lipase LPL, and monoacylglycerol lipase ABHD6 showed the highest mRNA expression level among 7 detected lipases. Both PLIN5 and PLIN2 were the most abundant perilipins, and among 8 FA-binding proteins, FABP3 and FABP5 were predominant. During in vitro maturation (IVM), expression of most of these genes increased at 6 h of IVM (P < 0.05, ANOVA) in CC. At that time, germinal vesicle breakdown occurred in enclosed oocytes and hyaluronan synthase HAS2, involved in the extra-cellular matrix formation, was upregulated in CC. The most upregulated genes after 18 h of IVM in CC were ABDH6 (48.5-fold as compared to immature, P < 0.01, M-W), FABP3 (16.6-fold, P < 0.01, M-W), and PLIN2 (5.5-fold, P < 0.05, M-W). Expression of all of these lipolysis-related genes was also detected in the oocytes. At the protein level, PLIN2 was mainly localised in the cytoplasmic LD, both in CC and in the oocyte. In CC, FABP3 was detected in the cytoplasm, whereas in oocyte it was also localised to the germinal vesicle of immature oocytes and closely to the chromosomes during the first meiotic division. In addition, active phosphorylated hormone sensitive lipase HSL was always detected in CC and in mature oocytes, but not in immature oocytes. All these data demonstrate that lipolysis occurs both in CC and in the oocyte during maturation. Lipolysis may be necessary to maintain cell energy homeostasis by regulating intracellular concentration of free FA. Moreover, CC were already described to store the excess FA from follicular fluid in order to protect the oocyte. Our data corroborate the essential role of CC in oocyte survival through controlling FA metabolism inside the COC. Active lipolysis may therefore be required to reduce lipid storages as well as to produce energy necessary for oocyte meiosis progression and extracellular matrix secretion by CC in order to prepare COC for further fertilization.This work was supported by INRA, ANR (OSCILE project) and European subvention FP7-KBBE-2012–6 (FECUND project).


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Lun Suo ◽  
Guang-Bin Zhou ◽  
Qing-Gang Meng ◽  
Chang-Liang Yan ◽  
Zhi-Qiang Fan ◽  
...  

SummaryCryopreservation can cause cumulus cell damage around the immature oocytes, which may result in poor subsequent development. To evaluate the effect of the meiosis stage on the cumulus cell cryoinjury and determine the suitable stage for cryopreservation in immature oocytes, mouse oocytes at germinal vesicle (GV) and germinal vesicle breakdown (GVBD) stages were vitrified using open pulled straw (OPS) method. Cumulus cells damage was scored immediately after thawing by double-fluorescent staining. The survival rate of the oocytes was evaluated and the subsequent development of oocytes was assessed through in vitro culture (IVC) and in vitro fertilization (IVF) separately. After vitrification, a higher proportion of cumulus cells of GV oocytes were damaged than those of GVBD and untreated control groups. The survival rate of vitrified GVBD oocytes (94.1%) was significantly higher (p < 0.05) than that of GV oocytes (85.4%). Oocytes vitrified at GVBD stage (55.7%) showed similar cleavage rate compared to those at GV stage (49.2%), but significantly higher (p < 0.05) blastocyst rate (40.9% vs. 27.4%). These results demonstrate that oocytes at GVBD stage remain better cumulus membrane integrity and developmental ability during vitrification than those at GV stage, indicating they are more suitable for immature oocytes cryopreservation in mice.


Zygote ◽  
1997 ◽  
Vol 5 (3) ◽  
pp. 213-217 ◽  
Author(s):  
J. Fulka ◽  
N.L. First ◽  
C. Lee ◽  
J. Fulka ◽  
R.M. Moor

SummaryImmature mouse oocytes (germinal vesicle stage, GV), oocytes at different stages during maturation (prometaphase to anaphase I) and matured oocytes (metaphase II arrested) were cultured in 6-dimethylaminopurine (6-DMAP)-supplemented medium also containing bromodeoxyuridine for the assessment of DNA replication in these cells. Immature oocytes remained arrested at the GV stage and DNA replication was never detected in them. On the other hand, oocytes at the prometaphase to anaphase-telophase I stages responded to 6-DMAP treatment by forming nuclei which synthesised DNA. Mature (metaphase II) oocytes did not respond to 6-DMAP and their chromatin remained condensed. DNA synthesis could even be induced in GV-staged oocytes, but only when they were fused to freshly activated oocytes and incubated in 6-DMAP-supplemented medium.


2019 ◽  
Vol 8 (7) ◽  
pp. 2536
Author(s):  
Athula Kaluarachchi ◽  
HarshalalRukka Seneviratne ◽  
TuanMilhan Batcha ◽  
Sumedha Wijeratne ◽  
GardieRole Malwattage Jayawardena

2005 ◽  
Vol 17 (2) ◽  
pp. 288
Author(s):  
T. Amano ◽  
T. Mori ◽  
K. Matsumoto ◽  
T. Watanabe ◽  
A. Iritani

Increase of inositol 1,4,5-triphosphate (IP3) in the cytoplasm of mammalian oocytes is said to be responsible for [Ca2+]i oscillation observed in the oocytes immediately after sperm penetration, and the [Ca2+]i oscillation is known to be essential for the development of embryos. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of oocytes and affecting the embryonic development. To obtain more information about the role of cumulus cells in cytoplasmic maturation, the effects of cumulus cells during maturation on the rise in [Ca2+]i and on the rate of activation of porcine mature oocytes induced by IP3 injection were investigated. The immature porcine oocytes were divided into three groups: COCs (intact cumulus-oocyte complexes), DOs (oocytes denuded of their cumulus cells), Co-culture (DOs attached to separated cumulus cells). These groups of immature oocytes were cultured in NCSU23 46 h for maturation. To examine the function of cumulus cells, two groups of immature oocytes were also prepared: DOs + pyruvate (DOs put into NCSU23 with pyruvate) and COCs-glucose free (COCs put into NCSU23 without glucose). The mature oocytes from each group were loaded with Ca2+ indicator fluorescent dye Fura2-AM, and then were irradiated by 340 nm and 360 nm of ultraviolet immediately after the injection of IP3. The intensities of emission light caused by the irradiation of 340 nm and 360 nm ultraviolet were recorded as E340 and E360. Since coupling of Ca2+ and the dye intensifies E340, but does not change E360, the level of [Ca2+]i was shown as R (ratio = E340/E360) in this study. Activation rate was calculated by counting the number of the oocytes that formed pronuclei by injection of IP3. ANOVA and Student's t-test were used in this study. Transient rise in [Ca2+]i was observed in the mature oocytes from every group. The peak R of the rise in [Ca2+]i of the mature oocytes derived from COCs, Dos, and Co-culture and induced by IP3 were 7.2, 4.0, and 6.9, respectively. The R of DOs was significantly lower than those of the others (P < 0.05). Also, the activation rate of the mature oocytes from DOs was significantly lower than those from COCs and Co-culture (31, 66, and 66%). The mature oocytes from DOs + pyruvate showed the same level of peak R compared with those from COCs (7.4 and 6.3), but COCs-glucose free showed a slight but significantly lower peak R compared with the mature oocytes from COCs (6.0 and 7.4, P < 0.05). In conclusion, cumulus cells appeared to support the rise in [Ca2+]i of porcine oocytes induced by IP3 during maturation and the following activation. Moreover, a function of cumulus cells supposedly produces pyruvate by metabolizing glucose and provides it to oocytes during maturation for promoting the cytoplasmic maturation. A part of this study was supported by a Grant-in-Aid for the 21st Century COE Program of the Japan MEXT, and by a grant from the Wakayama Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence of the JST.


Sign in / Sign up

Export Citation Format

Share Document