immature mouse
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 10)

H-INDEX

38
(FIVE YEARS 1)

2021 ◽  
Vol 22 (19) ◽  
pp. 10241
Author(s):  
Darya A. Tourzani ◽  
Maria A. Battistone ◽  
Ana M. Salicioni ◽  
Sylvie Breton ◽  
Pablo E. Visconti ◽  
...  

Mammalian sperm must undergo two post-testicular processes to become fertilization-competent: maturation in the male epididymis and capacitation in the female reproductive tract. While caput epididymal sperm are unable to move and have not yet acquired fertilization potential, sperm in the cauda epididymis have completed their maturation, can move actively, and have gained the ability to undergo capacitation in the female tract or in vitro. Due to the impossibility of mimicking sperm maturation in vitro, the molecular pathways underlying this process remain largely unknown. We aimed to investigate the use of caput epididymal ligation as a tool for the study of sperm maturation in mice. Our results indicate that after seven days of ligation, caput sperm gained motility and underwent molecular changes comparable with those observed for cauda mature sperm. Moreover, ligated caput sperm were able to activate pathways related to sperm capacitation. Despite these changes, ligated caput sperm were unable to fertilize in vitro. Our results suggest that transit through the epididymis is not required for the acquisition of motility and some capacitation-associated signaling but is essential for full epididymal maturation. Caput epididymal ligation is a useful tool for the study of the molecular pathways involved in the acquisition of sperm motility during maturation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Nikoosokhan ◽  
B Ebrahimi ◽  
A Alizadeh ◽  
S Hajiaghalou

Abstract Study question Can the Culture of cryopreserved immature mouse testicular tissue in the presence of NAC improves the developmental process and prevent apoptosis induction during the culture? Summary answer An appropriate dosage of NAC in the culture medium of immature mouse testicular tissue was associated with increased cell survival and spermatogonia stem cell regeneration. What is known already Spermatogonial stem cells (SSCs) are the most advanced type of stem cells in the testes of prepubertal boys which are the main targets of oncological treatments. Therefore, the only possible alternative to maintain fertility in prepubertal boys is to preserve SSCs before their depletion by cryopreserving the testicular tissue. Despite the possibility of obtaining viable spermatozoa using cryopreserved testicular tissue cultivated in vitro,cryopreservation methods and damages caused by the culture procedure would be obstacles for maintaining the testicular tissueand it seems that optimizing the culture condition is vital. Study design, size, duration Testis tissues were harvested from 6-days-old immature NMRI male mice (n = 100) after cervical dislocation and vitrified. After 3 days testicular biopsies were warmed and distributed into control, culture Ӏ (not supplemented with NAC) and culture ӀӀ (supplemented with NAC) groups. To determine the appropriate NAC concentration 8 different dosages of NAC were evaluated in terms of cell survival and the best dose, a culture medium containing 125mmol/L NAC was selected to continue the study. Participants/materials, setting, methods Vitrified-warmed fragments (2mm3) obtaining from immature NMRI mice were cultured in vitro for 7 days on agar gel. The effects of culture conditions were assessed by Morphological evaluation of seminiferous tubules (using Hematoxylin-eosin staining). Cell viability, protein expression (caspase–3), and gene expression (Bax, Bcl2, Caspase–3, plzf) were evaluated by flow cytometry, immunofluorescence staining, and real time polymerase chain reaction respectively. Additionally, Malondialdehyde (MDA) concentration in the culture medium was measured by MAD Assay Kit. Main results and the role of chance Significant (p < 0.01) increase in cell viability was observed in the culture ӀӀ group after 7 days of culture compared to the culture Ӏ. Bax/Bcl2 ratio was significantly (p < 0.01) lower in the culture ӀӀ group compared to the control and culture Ӏ group. The expression of caspase–3 showed a significant (p < 0.001) increase in the culture ӀӀ group while immunofluorescence analysis showed low expression of it in all groups. These results were consistent with the high level of Bcl2expression that inhibited Caspase–3 expression and consequently the inhibition of apoptosis, and on the other hand, the presence of NAC showed that plzf expressions significantly (p < 0.001) increased in culture ӀӀ group compared to the control and culture Ӏ group. Although the presence of NAC did not inhibit all the deleterious effects of culture medium on tissue morphology, NAC was able to maintain better integrity of tissue and seminiferous tubules within central regions compared to the group without NAC. The decrease in MDA level in the presence of NAC (culture ӀӀ) was also a good indicator to confirm the desired results obtained from the presence of NAC in the culture medium. Limitations, reasons for caution Although the findings of the study were satisfactory in mice tissue after 1 week of culture, it is essential to replicate the experiments using human tissue and evaluate the quality and reproductive potential of surviving spermatogonia after long-term storage to become clinically applicable. Wider implications of the findings: This study highlights the necessity for further experiments to improve the testicular tissue culture conditions for better spermatogonial survival and differentiation to sperm, as the prepubertal fertility restoration methods are promising to be implemented in the clinic in the near future. Trial registration number Not applicable


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Florence Naillat ◽  
Heba Saadeh ◽  
Joanna Nowacka-Woszuk ◽  
Lenka Gahurova ◽  
Fatima Santos ◽  
...  

Abstract Background Reproductive biology methods rely on in vitro follicle cultures from mature follicles obtained by hormonal stimulation for generating metaphase II oocytes to be fertilised and developed into a healthy embryo. Such techniques are used routinely in both rodent and human species. DNA methylation is a dynamic process that plays a role in epigenetic regulation of gametogenesis and development. In mammalian oocytes, DNA methylation establishment regulates gene expression in the embryos. This regulation is particularly important for a class of genes, imprinted genes, whose expression patterns are crucial for the next generation. The aim of this work was to establish an in vitro culture system for immature mouse oocytes that will allow manipulation of specific factors for a deeper analysis of regulatory mechanisms for establishing transcription regulation-associated methylation patterns. Results An in vitro culture system was developed from immature mouse oocytes that were grown to germinal vesicles (GV) under two different conditions: normoxia (20% oxygen, 20% O2) and hypoxia (5% oxygen, 5% O2). The cultured oocytes were sorted based on their sizes. Reduced representative bisulphite sequencing (RRBS) and RNA-seq libraries were generated from cultured and compared to in vivo-grown oocytes. In the in vitro cultured oocytes, global and CpG-island (CGI) methylation increased gradually along with oocyte growth, and methylation of the imprinted genes was similar to in vivo-grown oocytes. Transcriptomes of the oocytes grown in normoxia revealed chromatin reorganisation and enriched expression of female reproductive genes, whereas in the 5% O2 condition, transcripts were biased towards cellular stress responses. To further confirm the results, we developed a functional assay based on our model for characterising oocyte methylation using drugs that reduce methylation and transcription. When histone methylation and transcription processes were reduced, DNA methylation at CGIs from gene bodies of grown oocytes presented a lower methylation profile. Conclusions Our observations reveal changes in DNA methylation and transcripts between oocytes cultured in vitro with different oxygen concentrations and in vivo-grown murine oocytes. Oocytes grown under 20% O2 had a higher correlation with in vivo oocytes for DNA methylation and transcription demonstrating that higher oxygen concentration is beneficial for the oocyte maturation in ex vivo culture condition. Our results shed light on epigenetic mechanisms for the development of oocytes from an immature to GV oocyte in an in vitro culture model.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 604
Author(s):  
Carmela Gallo ◽  
Giusi Barra ◽  
Marisa Saponaro ◽  
Emiliano Manzo ◽  
Laura Fioretto ◽  
...  

Immunotherapy takes advantage of the immune system to prevent, control, and eliminate neoplastic cells. The research in the field has already led to major breakthroughs to treat cancer. In this work, we describe a platform that integrates in vitro bioassays to test the immune response and direct antitumor effects for the preclinical discovery of anticancer candidates. The platform relies on the use of dendritic cells that are professional antigen-presenting cells (APC) able to activate T cells and trigger a primary adaptive immune response. The experimental procedure is based on two phenotypic assays for the selection of chemical leads by both a panel of nine tumor cell lines and growth factor-dependent immature mouse dendritic cells (D1). The positive hits are then validated by a secondary test on human monocyte-derived dendritic cells (MoDCs). The aim of this approach is the selection of potential immunotherapeutic small molecules from natural extracts or chemical libraries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yue Wang ◽  
Han Xiao ◽  
Lei Yang ◽  
Xiaojing Jia ◽  
Xuan Guo ◽  
...  

Abstract p-Alkoxyphenols (AOPs) are a class of ethers that are widely used in industrial and agricultural productions and daily necessities. p-Phenoxyphenol (PhOP) and p-pentyloxyphenol (PeOP) belong to this class and have been reported to be estrogenic in vitro. However, their in vivo estrogenic activities have rarely been of concern. In this study, we performed an immature mouse uterotrophic assay and studied the estrogenic effects of these two compounds in mice. The results revealed that the uterine weights of the animals treated with PhOP significantly increased at doses of 30 and 300 mg kg-1 bw day-1 for 3 days (P < 0.05), while no significant uterotrophic effects were observed in the mice treated with PeOP. Using next-generation transcriptome sequencing (RNA-seq), we also analyzed the gene expression in the uterine tissue of mice treated with PhOP and PeOP. The observed gene regulation patterns of the PhOP- and PeOP-treated specimens were similar to those of the 17β-estradiol (E2)-treated specimens. In particular, some estrogen-responsive genes, such as the Sprr2 gene family, Apoa1, Prap1, and Ahsg, displayed a regulation trend similar to that of E2. In addition, molecule docking analysis revealed that both PhOP and PeOP could be well docked into the active site of hERα, with potential of mean force (PMF) values of − 58.68 and − 52.67 kcal mol-1 for PhOP and PeOP, respectively. The results of this study indicate that PhOP exhibits relatively strong in vivo estrogenic activity, which could be of future concern.


2020 ◽  
Vol 329 ◽  
pp. 109217
Author(s):  
Emilia Petrova ◽  
Ekaterina Pavlova ◽  
Alexey A. Tinkov ◽  
Olga P. Ajsuvakova ◽  
Anatoly V. Skalny ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 57-70
Author(s):  
Maria K. Serebriakova ◽  
Anna A. Dotsenko ◽  
Igor V. Kudryavtsev ◽  
Alexander V. Polevshchikov

The aim of the study was to investigate the interaction of lectins with various populations of maturing murine T-lymphocytes, as well as with thymocytes at different stages of apoptosis. Materials and methods. Thymocyte typing of 80 CBA mice was performed by flow cytometry. The binding of lectins to cells in early and late apoptosis induced by the administration of hydrocortisone was also evaluated. Results. The suitability of peanut and Helix pomatia lectins for differentiation of mature and immature mouse thymocytes has been established. 11 lectins bound to living cells, during the transition of cells to the state of early apoptosis, thymocytes were stained with 16 lectins, and upon transition to late apoptosis, 20 of 23 lectins bound to the cells. Conclusion. The use of labeled lectins to assess the stage of murine thymocyte apoptosis does not have obvious advantages over existing methods. The degree of binding of all lectins to thymocytes in apoptosis increases as the charge on the membrane decreases and its permeability increases. For typing thymocytes in the early stages of maturation, peanut and Helix pomatia lectins can be used. Snowdrop and amaryllis lectins are not suitable for differentiation of thymocytes by maturity.


Sign in / Sign up

Export Citation Format

Share Document