scholarly journals Stability and Convergence of an Effective Numerical Method for the Time-Space Fractional Fokker-Planck Equation with a Nonlinear Source Term

2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Qianqian Yang ◽  
Fawang Liu ◽  
Ian Turner

Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPENST), which involve the Caputo time fractional derivative (CTFD) of order (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order (1, 2]. Approximating the CTFD and RSFD using the L1-algorithm and shifted Grünwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.

2019 ◽  
Vol 40 (2) ◽  
pp. 1217-1240 ◽  
Author(s):  
Can Huang ◽  
Kim Ngan Le ◽  
Martin Stynes

Abstract First, a new convergence analysis is given for the semidiscrete (finite elements in space) numerical method that is used in Le et al. (2016, Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal.,54 1763–1784) to solve the time-fractional Fokker–Planck equation on a domain $\varOmega \times [0,T]$ with general forcing, i.e., where the forcing term is a function of both space and time. Stability and convergence are proved in a fractional norm that is stronger than the $L^2(\varOmega )$ norm used in the above paper. Furthermore, unlike the bounds proved in Le et al., the constant multipliers in our analysis do not blow up as the order of the fractional derivative $\alpha $ approaches the classical value of $1$. Secondly, for the semidiscrete (L1 scheme in time) method for the same Fokker–Planck problem, we present a new $L^2(\varOmega )$ convergence proof that avoids a flaw in the analysis of Le et al.’s paper for the semidiscrete (backward Euler scheme in time) method.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1260
Author(s):  
Elsayed I. Mahmoud ◽  
Viktor N. Orlov

This paper presents a practical numerical method, an implicit finite-difference scheme for solving a two-dimensional time-space fractional Fokker–Planck equation with space–time depending on variable coefficients and source term, which represents a model of a Brownian particle in a periodic potential. The Caputo derivative and the Riemann–Liouville derivative are considered in the temporal and spatial directions, respectively. The Riemann–Liouville derivative is approximated by the standard Grünwald approximation and the shifted Grünwald approximation. The stability and convergence of the numerical scheme are discussed. Finally, we provide a numerical example to test the theoretical analysis.


2009 ◽  
Vol 2009.22 (0) ◽  
pp. 502-503
Author(s):  
Daisuke SAITOU ◽  
Kenji IMADERA ◽  
Takayuki UTSUMI ◽  
Jiquan LI ◽  
Yasuaki KISHIMOTO

2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2021 ◽  
Vol 27 ◽  
pp. 15
Author(s):  
M. Soledad Aronna ◽  
Fredi Tröltzsch

In this article we study an optimal control problem subject to the Fokker-Planck equation ∂tρ − ν∆ρ − div(ρB[u]) = 0 The control variable u is time-dependent and possibly multidimensional, and the function B depends on the space variable and the control. The cost functional is of tracking type and includes a quadratic regularization term on the control. For this problem, we prove existence of optimal controls and first order necessary conditions. Main emphasis is placed on second order necessary and sufficient conditions.


2020 ◽  
Vol 30 (04) ◽  
pp. 685-725 ◽  
Author(s):  
Giulia Furioli ◽  
Ada Pulvirenti ◽  
Elide Terraneo ◽  
Giuseppe Toscani

We introduce a class of new one-dimensional linear Fokker–Planck-type equations describing the dynamics of the distribution of wealth in a multi-agent society. The equations are obtained, via a standard limiting procedure, by introducing an economically relevant variant to the kinetic model introduced in 2005 by Cordier, Pareschi and Toscani according to previous studies by Bouchaud and Mézard. The steady state of wealth predicted by these new Fokker–Planck equations remains unchanged with respect to the steady state of the original Fokker–Planck equation. However, unlike the original equation, it is proven by a new logarithmic Sobolev inequality with weight and classical entropy methods that the solution converges exponentially fast to equilibrium.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
A. A. Hemeda ◽  
E. E. Eladdad

In this article, we propose the new iterative method and introduce the integral iterative method to solve linear and nonlinear Fokker-Planck equations and some similar equations. The results obtained by the two methods are compared with those obtained by both Adomian decomposition and variational iteration methods. Comparison shows that the two methods are more effective and convenient to use and overcome the difficulties arising in calculating Adomian polynomials and Lagrange multipliers, which means that the considered methods can simply and successfully be applied to a large class of problems.


Sign in / Sign up

Export Citation Format

Share Document