scholarly journals An Energy-Efficient Data Delivery Scheme for Delay-Sensitive Traffic in Wireless Sensor Networks

2010 ◽  
Vol 6 (1) ◽  
pp. 792068 ◽  
Author(s):  
Harshavardhan Sabbineni ◽  
Krishnendu Chakrabarty

We propose a novel data-delivery method for delay-sensitive traffic that significantly reduces the energy consumption in wireless sensor networks without reducing the number of packets that meet end-to-end real-time deadlines. The proposed method, referred to as SensiQoS, leverages the spatial and temporal correlation between the data generated by events in a sensor network and realizes energy savings through application-specific in-network aggregation of the data. SensiQoS maximizes energy savings by adaptively waiting for packets from upstream nodes to perform in-network processing without missing the real-time deadline for the data packets. SensiQoS is a distributed packet scheduling scheme, where nodes make localized decisions on when to schedule a packet for transmission to meet its end-to-end real-time deadline and to which neighbor they should forward the packet to save energy. We also present a localized algorithm for nodes to adapt to network traffic to maximize energy savings in the network. Simulation results show that SensiQoS improves the energy savings in sensor networks where events are sensed by multiple nodes, and spatial and/or temporal correlation exists among the data packets. Energy savings due to SensiQoS increase with increase in the density of the sensor nodes and the size of the sensed events.

2022 ◽  
Vol 18 (1) ◽  
pp. 1-41
Author(s):  
Pamela Bezerra ◽  
Po-Yu Chen ◽  
Julie A. McCann ◽  
Weiren Yu

As sensor-based networks become more prevalent, scaling to unmanageable numbers or deployed in difficult to reach areas, real-time failure localisation is becoming essential for continued operation. Network tomography, a system and application-independent approach, has been successful in localising complex failures (i.e., observable by end-to-end global analysis) in traditional networks. Applying network tomography to wireless sensor networks (WSNs), however, is challenging. First, WSN topology changes due to environmental interactions (e.g., interference). Additionally, the selection of devices for running network monitoring processes (monitors) is an NP-hard problem. Monitors observe end-to-end in-network properties to identify failures, with their placement impacting the number of identifiable failures. Since monitoring consumes more in-node resources, it is essential to minimise their number while maintaining network tomography’s effectiveness. Unfortunately, state-of-the-art solutions solve this optimisation problem using time-consuming greedy heuristics. In this article, we propose two solutions for efficiently applying Network Tomography in WSNs: a graph compression scheme, enabling faster monitor placement by reducing the number of edges in the network, and an adaptive monitor placement algorithm for recovering the monitor placement given topology changes. The experiments show that our solution is at least 1,000× faster than the state-of-the-art approaches and efficiently copes with topology variations in large-scale WSNs.


2018 ◽  
Vol 14 (1) ◽  
pp. 37-52
Author(s):  
Venkatesh ◽  
Chanchal Singh Sengar ◽  
Kuppanna Rajuk Venugopal ◽  
Sundaraja Sitharama Iyengar ◽  
Lalit Mohan Patnaik

2013 ◽  
Vol 431 ◽  
pp. 318-324 ◽  
Author(s):  
Chau Chung Song ◽  
Chen Fu Feng ◽  
Chieh Yao Lin ◽  
Bo Hao Yan

In this paper, an application-layer networking system is analyzed and implemented for wireless sensor network. We focus on studying the binding connection methods on the applicationlayer network to implement the universal plug in/out capability on ZigBee networks. The proposed application-layer network provides a cluster-based and plug-and-play communication functions to dynamically and automatically connect in/out the ZigBee nodes on wireless sensor networks. Moreover, the network planning and connection mechanism is achieved by the Binding link objects of ZigBee application-layer functions. By means of Binding connection method, ZigBee nodes in sensor network can obtain the real-time messages and valid information each other. In this study, the various parameters setting and system firmware program are designed to analyze and evaluate the binding methods and data packets of application-layer communication for ZigBee network. Finally, the profile cluster IDs of application-layer network are applied to build up the specific ZigBee sensor systems with Cluster In/Out functions.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 135 ◽  
Author(s):  
Vicente Casares-Giner ◽  
Tatiana Inés Navas ◽  
Dolly Smith Flórez ◽  
Tito R. Vargas H.

In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the “west” side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the “east” side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m.


Sign in / Sign up

Export Citation Format

Share Document