scholarly journals Genome Size Dynamics and Evolution in Monocots

2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Ilia J. Leitch ◽  
Jeremy M. Beaulieu ◽  
Mark W. Chase ◽  
Andrew R. Leitch ◽  
Michael F. Fay

Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size) between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small ( pg), there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
C. P. Stelzer ◽  
J. Blommaert ◽  
A. M. Waldvogel ◽  
M. Pichler ◽  
B. Hecox-Lea ◽  
...  

Abstract Background Eukaryotic genomes are known to display an enormous variation in size, but the evolutionary causes of this phenomenon are still poorly understood. To obtain mechanistic insights into such variation, previous studies have often employed comparative genomics approaches involving closely related species or geographically isolated populations within a species. Genome comparisons among individuals of the same population remained so far understudied—despite their great potential in providing a microevolutionary perspective to genome size evolution. The rotifer Brachionus asplanchnoidis represents one of the most extreme cases of within-population genome size variation among eukaryotes, displaying almost twofold variation within a geographic population. Results Here, we used a whole-genome sequencing approach to identify the underlying DNA sequence differences by assembling a high-quality reference genome draft for one individual of the population and aligning short reads of 15 individuals from the same geographic population including the reference individual. We identified several large, contiguous copy number variable regions (CNVs), up to megabases in size, which exhibited striking coverage differences among individuals, and whose coverage overall scaled with genome size. CNVs were of remarkably low complexity, being mainly composed of tandemly repeated satellite DNA with only a few interspersed genes or other sequences, and were characterized by a significantly elevated GC-content. CNV patterns in offspring of two parents with divergent genome size and CNV patterns in several individuals from an inbred line differing in genome size demonstrated inheritance and accumulation of CNVs across generations. Conclusions By identifying the exact genomic elements that cause within-population genome size variation, our study paves the way for studying genome size evolution in contemporary populations rather than inferring patterns and processes a posteriori from species comparisons.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 620-623
Author(s):  
Thomas G. Ranney ◽  
Connor F. Ryan ◽  
Lauren E. Deans ◽  
Nathan P. Lynch

Illicium is an ancient genus and member of the earliest diverging angiosperms known as the Amborellales, Nymphaeales, and Austrobaileyales (ANA) grade. These adaptable, broadleaf evergreen shrubs, including ≈40 species distributed throughout Asia and North America, are valued for diverse culinary, medicinal, and ornamental applications. The study of cytogenetics of Illicium can clarify various discrepancies and further elucidate chromosome numbers, ploidy, and chromosome and genome size evolution in this basal angiosperm lineage and provide basic information to guide plant breeding and improvement programs. The objectives of this study were to use flow cytometry and traditional cytology to determine chromosome numbers, ploidy levels, and relative genome sizes of cultivated Illicium. Of the 29 taxa sampled, including ≈11 species and one hybrid, 2C DNA contents ranged from 24.5 pg for Illicium lanceolatum to 27.9 pg for Illicium aff. majus. The genome sizes of Illicium species are considerably higher than other ANA grade lineages indicating that Illicium went through considerable genome expansion compared with sister lineages. The New World sect. Cymbostemon had a slightly lower mean 2C genome size of 25.1 pg compared with the Old World sect. Illicium at 25.9 pg, providing further support for recognizing these taxonomic sections. All taxa appeared to be diploid and 2n = 2x = 28, except for Illicium floridanum and Illicium mexicanum which were found to be 2n = 2x = 26, most likely resulting from dysploid reduction after divergence into North America. The base chromosome number of x = 14 for most Illicium species suggests that Illicium are ancient paleotetraploids that underwent a whole genome duplication derived from an ancestral base of x = 7. Information on cytogenetics, coupled with phylogenetic analyses, identifies some limitations, but also considerable potential for the development of plant breeding and improvement programs with this genus.


2020 ◽  
Author(s):  
Lindsey K. Olsen ◽  
Jacqueline Heckenhauer ◽  
John S. Sproul ◽  
Rebecca B. Dikow ◽  
Vanessa L. Gonzalez ◽  
...  

AbstractTrichoptera (caddisflies) play an essential role in freshwater ecosystems; for instance, larvae process organic material from the water and are food for a variety of predators. Knowledge on the genomic diversity of caddisflies can facilitate comparative and phylogenetic studies thereby allowing scientists to better understand the evolutionary history of caddisflies. While Trichoptera are the most diverse aquatic insect order, they remain poorly represented in terms of genomic resources. To date, all long-read based genomes have been sequenced from individuals in the retreat-making suborder, Annulipalpia, leaving ∼275 Ma of evolution without high-quality genomic resources. Here, we report the first long-read based de novo genome assemblies of two tube case-making Trichoptera from the suborder Integripalpia, Agrypnia vestita Walker and Hesperophylax magnus Banks. We find that these tube case-making caddisflies have genome sizes that are at least three-fold larger than those of currently sequenced annulipalpian genomes and that this pattern is at least partly driven by major expansion of repetitive elements. In H. magnus, long interspersed nuclear elements (LINEs) alone exceed the entire genome size of some annulipalpian counterparts suggesting that caddisflies have high potential as a model for understanding genome size evolution in diverse insect lineages.SignificanceThere is a lack of genomic resources for aquatic insects. So far, only three high-quality genomes have been assembled, all from individuals in the retreat-making suborder Annulipalpia. In this article, we report the first high-quality genomes of two case-making species from the suborder Integripalpia, which are essential for studying genomic diversity across this ecologically diverse insect order. Our research reveals larger genome sizes in the tube case-makers (suborder Integripalpia, infraorder Phryganides), accompanied by a disproportionate increase of repetitive DNA. This suggests that genome size is at least partly driven by a major expansion of repetitive elements. Our work shows that caddisflies have high potential as a model for understanding how genomic diversity might be linked to functional diversification and forms the basis for detailed studies on genome size evolution in caddisflies.Data depositionThis project has been deposited at NCBI under the Bioproject ID: PRJNA668166


2021 ◽  
Author(s):  
C.P. Stelzer ◽  
J. Blommaert ◽  
A.M. Waldvogel ◽  
M. Pichler ◽  
B. Hecox-Lea ◽  
...  

AbstractEukaryotic genomes vary greatly in size due to variation in the proportion of non-coding DNA, a pattern that emerges both in comparisons at a larger taxonomic scale and at the level of individuals within a species. The rotifer Brachionus asplanchnoidis represents one of the most extreme cases of intraspecific genome size variation among Eukaryotes, displaying almost 2-fold variation within a geographic population. Here we used a whole-genome sequencing approach to identify the underlying DNA sequence differences by assembling a high-quality reference genome draft for one individual of the population and aligning short-reads of 15 individuals from the same geographic population. We identified large, contiguous copy number variable regions (CNVs), which exhibited significant coverage differences among individuals, and whose coverage overall scaled with genome size. CNVs were mainly composed of tandemly repeated satellite DNA, with only few interspersed genes or other sequences, and were characterized by an elevated GC-content. Judging from their distributions across contigs, some CNVs are fragments of accessory (B-)chromosomes while others resemble large insertions to normal chromosomes. CNV patterns in offspring of two parents with divergent genome size, and CNV patterns in several individuals from an inbred line differing in genome size demonstrated inheritance and accumulation of CNVs across generations. Our study provides unprecedented insights into genome size evolution at microevolutionary time scales and thus paves the way for studying genome size evolution in contemporary populations rather than inferring patterns and processes a posteriori from species comparisons.


Evolution ◽  
2001 ◽  
Vol 55 (11) ◽  
pp. 2363 ◽  
Author(s):  
Elizabeth L. Brainerd ◽  
Sandra S. Slutz ◽  
Edward K. Hall ◽  
Randall W. Phillis

2017 ◽  
Vol 178 (5) ◽  
pp. 352-361 ◽  
Author(s):  
Meghan Castelli ◽  
Cathy H. Miller ◽  
Alexander N. Schmidt-Lebuhn

2016 ◽  
Author(s):  
Aurélie Kapusta ◽  
Alexander Suh ◽  
Cédric Feschotte

AbstractGenome size in mammals and birds shows remarkably little interspecific variation compared to other taxa. Yet, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been co-variation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size homeostasis. To test this model, we develop a computational pipeline to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 million years (My) in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extent across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified ‘accordion’ model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.


2020 ◽  
Author(s):  
Jing Li ◽  
Meiqi Lv ◽  
Lei Du ◽  
A Yunga ◽  
Shijie Hao ◽  
...  

AbstractThe monocot family Melanthiaceae with varying genome sizes in a range of 230-fold is an ideal model to study the genome size fluctuation in plants. Its family member Paris genus demonstrates an evolutionary trend of bearing huge genomes characterized by an average c-value of 49.22 pg. Here, we report a 70.18 Gb genome assembly out of the 82.55 Gb genome of Paris polyphylla var. yunnanensis (PPY), which represents the biggest sequenced genome to date. We annotate 69.53% repetitive sequences in this genome and 62.50% of which are long-terminal repeat (LTR) transposable elements. Further evolution analysis indicates that the giant genome likely results from the joint effect of common and species-specific expansion of different LTR superfamilies, which might contribute to the environment adaptation after speciation. Moreover, we identify the candidate pathway genes for the biogenesis of polyphyllins, the PPY-specific medicinal saponins, by complementary approaches including genome mining, comprehensive analysis of 31 next-generation RNA-seq data and 55.23 Gb single-molecule circular consensus sequencing (CCS) RNA-seq reads, and correlation of the transcriptome and phytochemical data of five different tissues at four growth stages. This study not only provides significant insights into plant genome size evolution, but also paves the way for the following polyphyllin synthetic biology.


Genome ◽  
2017 ◽  
Vol 60 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Catherine E. Newman ◽  
T. Ryan Gregory ◽  
Christopher C. Austin

The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5–20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.


Sign in / Sign up

Export Citation Format

Share Document