scholarly journals From Spheric to Aspheric Solid Polymer Lenses: A Review

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Kuo-Yung Hung ◽  
Po-Jen Hsiao ◽  
Fang-Gang Tseng ◽  
Miao-Chin Wei

This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm), and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA), and cyclic olefin copolymer (COC). Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

Author(s):  
Evan Small ◽  
Sadegh M. Sadeghipour ◽  
Mehdi Asheghi

Demands for the high storage capacities and rates of data transfer have been overwhelming in the recent years. With the increasing use of multimedia, the rewritable optical phase-change disks, e.g. CD and DVD, have become more popular. The optical PC data storage devices provide relatively short data access rates (∼ 10 MHz) and moderate areal densities. As in other areas of data storage, there has been tremendous demand and pressure, driven by consumer application, for inexpensive high-density PC systems. So far, the optical data storage industry has managed to meet the demands by using lasers with shorter wavelengths and objective lenses with higher numerical aperture (NA). Several strategies such as “multilevel storage layers” [1] and “mark radial width modulation” [2] have been proposed for the next generation of the high-density PC data storage devices. There have been advances in near field optical techniques to increase density (40 Gb/in) using solid immersion lens [3]. Hosaka et al. [4] demonstrated 60 nm domains in phase change media that translates to 170 Gb/in2 using a scanning near-filed optical microscope. Kado and Tohda [5] used an atomic force microscope (AFM) to locally modify the electrical property (×100) of a PC material by applying an electrical pulse between the probe and media. They achieved an areal density near 1 Tbits/cm2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 818
Author(s):  
Xuehua Zhang ◽  
Qian Wang ◽  
Shun Liu ◽  
Wei Zhang ◽  
Fangren Hu ◽  
...  

GeO2/organically modified silane (ormosils) organic-inorganic composite films containing azobenzene were prepared by combining sol-gel technology and spin coating method. Optical waveguide properties including the refractive index and thickness of the composite films were characterized by using a prism coupling instrument. Surface morphology and photochemical properties of the composite films were investigated by atomic force microscope and Fourier transform infrared spectrometer. Results indicate that the composite films have smooth and neat surface, and excellent optical waveguide performance. Photo-isomerization properties of the composite films were studied by using a UV–Vis spectrophotometer. Optical switching performance of the composite films was also studied under the alternating exposure of 365 nm ultraviolet light and 410 nm visible light. Finally, strip waveguides and microlens arrays were built in the composite films through a UV soft imprint technique. Based on the above results, we believe that the prepared composite films are promising candidates for micro-nano optics and photonic applications, which would allow directly integrating the optical data storage and optical switching devices onto a single chip.


2006 ◽  
Vol 18 (S1) ◽  
pp. 38-44
Author(s):  
Bernhard Cord ◽  
Michael Mücke ◽  
Eggo Sichmann

2002 ◽  
Author(s):  
Edwin P. Walker ◽  
Jacques Duparre ◽  
Haichuan Zhang ◽  
Wenyi Feng ◽  
Yi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document