scholarly journals Gait Disturbances in Dystrophic Hamsters

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Thomas G. Hampton ◽  
Ajit Kale ◽  
Ivo Amende ◽  
Wenlong Tang ◽  
Scott McCue ◽  
...  

The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was~13% shorter () in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 ( ms) compared to F1B hamsters ( ms; ). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 ( ms) compared to F1B hamsters ( ms; ). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters ( versus ; ). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.

2019 ◽  
Vol 86 ◽  
pp. 96-101 ◽  
Author(s):  
Nicholas J. Lobb ◽  
AuraLea C. Fain ◽  
Kayla D. Seymore ◽  
Tyler N. Brown

Author(s):  
U. Tasch ◽  
P. Moubarak ◽  
W. Tang ◽  
L. Zhu ◽  
R. M. Lovering ◽  
...  

We describe an instrument that assesses two features of the gait of rats, spatiotemporal paw movement variables (SPMV) and ground reaction forces (GRF) in the vertical direction. The GRF and the SPMV variables are measured electrically by eight single axis load-cells that support two floor plates. We can derive four gait parameters from the SPMV and GRF measured by the instrument: the stride length of individual limbs, the maximum and mean vertical ground forces, and the intensity of the vibrations created by each paw during locomotion. Measurements of the vertical GRF show errors of less than 3.5%; errors in the determination of the paw positions, used to derive stride lengths, are less than 9 mm. Here we report the stride length, maximum and mean GRF values, and the intensity of the floor vibrations of healthy adult mature rats. Our instrument is capable of evaluating changes in these gait parameters in rat models of injury and disease.


Robotica ◽  
2016 ◽  
Vol 34 (12) ◽  
pp. 2878-2891 ◽  
Author(s):  
Xiuli Zhang ◽  
Jiaqing Gong ◽  
Yanan Yao

SUMMARYWe designed a quadruped robot with a one-degree-of-freedom (1-DOF)-pitch head, a 1-DOF-roll tail, and 14 active DOFs in total, which are controlled via a central pattern generator (CPG) based on a Hopf oscillator. Head and tail movements are coupled to the leg movements with fixed phase differences. Experiments show that tail swinging in roll can equilibrate feet–ground reaction forces (GRF), reducing yaw errors and enabling the robot to maintain its direction when trotting. Head swing in pitch has the potential to increase flight time and stride length of the swinging legs and increase the robot's forward velocity when running in bounds.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Author(s):  
Priscila Mantovani Nocetti ◽  
Adriano Alberti ◽  
Viviane Freiberger ◽  
Letícia Ventura ◽  
Leoberto Ricardo Grigollo ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 436 ◽  
Author(s):  
Hilary Mary Clayton ◽  
Sarah Jane Hobbs

The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional GRFs in ridden dressage horses performing the piaffe. In-ground force plates were used to capture fore and hindlimb GRF data from seven well-trained dressage horses. Peak vertical GRF was significantly higher in forelimbs than in the hindlimbs (7.39 ± 0.99 N/kg vs. 6.41 ± 0.64 N/kg; p < 0.001) with vertical impulse showing a trend toward higher forelimb values. Peak longitudinal forces were small with no difference in the magnitude of braking or propulsive forces between fore and hindlimbs. Peak transverse forces were similar in magnitude to longitudinal forces and were mostly directed medially in the hindlimbs. Both the intra- and inter-individual variability of longitudinal and transverse GRFs were high (coefficient of variation 25–68%). Compared with the other diagonal gaits of dressage horses, the vertical GRF somewhat shifted toward the hindlimbs. The high step-to-step variability of the horizontal GRF components is thought to reflect the challenge of balancing on one diagonal pair of limbs with no forward momentum.


2007 ◽  
Vol 46 (3) ◽  
pp. 491-499 ◽  
Author(s):  
Melissa M. Scott-Pandorf ◽  
Nicholas Stergiou ◽  
Jason M. Johanning ◽  
Leon Robinson ◽  
Thomas G. Lynch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document