scholarly journals Investigation of Rotating MHD Viscous Flow and Heat Transfer between Stretching and Porous Surfaces Using Analytical Method

2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
M. Sheikholeslami ◽  
H. R. Ashorynejad ◽  
D. D. Ganji ◽  
A. Kolahdooz

Hydromagnetic flow between two horizontal plates in a rotating system, where the lower plate is a stretching sheet and the upper is a porous solid plate, is analyzed. Heat transfer in an electrically conducting fluid bonded by two parallel plates is studied in the presence of viscous dissipation. The equations of conservation of mass and momentum and energy are reduced to a nonlinear ordinary differential equations system. Homotopy perturbation method is used to get complete analytic solution for velocity and temperature profiles. Results show an acceptable agreement between this method results and numerical solution. Also the effects of different parameters are discussed through graphs.

2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2020 ◽  
Vol 18 (2) ◽  
pp. 113-121
Author(s):  
A. El Harfouf ◽  
A. Wakif ◽  
S. Hayani Mounir

In this current work, the heat transfer analysis for the unsteady squeezing magnetohydrodynamic flow of a viscous nanofluid between two parallel plates in the presence of thermal radiation, viscous and magnetic dissipations impacts, considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing the homotopy perturbation method. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results. This present numerical exploration has great relevance, consequently a better understanding of the squeezing flow phenomena in the hydraulic lifts, power transmission, nano gastric tubes, reactor fluidization areas.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
I-Chung Liu ◽  
Ahmed M. Megahed

We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM). The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Xidong Zhang ◽  
Hulin Huang

The prediction of electrically conducting fluid past a localized zone of applied magnetic field is the key for many practical applications. In this paper, the characteristics of flow and heat transfer (HI) for a liquid metal in a rectangular duct under a local magnetic field are investigated numerically using a three-dimensional model and the impact of some parameters, such as constrainment factor, κ, interaction parameter, N, and Reynolds number, Re, is also discussed. It is found that, in the range of Reynolds number 100 ≤ Re ≤ 900, the flow structures can be classified into the following four typical categories: no vortices, one pair of magnetic vortices, three pairs of vortices and vortex shedding. The simulation results indicate that the local heterogeneous magnetic field can enhance the wall-heat transfer and the maximum value of the overall increment of HI is about 13.6%. Moreover, the pressure drop penalty (ΔPpenalty) does not increasingly depend on the N for constant κ and Re. Thus, the high overall increment of HI can be obtained when the vortex shedding occurs.


2009 ◽  
Vol 419-420 ◽  
pp. 353-356 ◽  
Author(s):  
Chien Hsin Chen

The problem of flow and heat transfer over a continuously stretching surface finds applications in many manufacturing processes, such as polymer extrusion, wire drawing, continuous casting, glass fiber production, and metallurgical processes. It is known that the properties of the final product depend considerably on the rate of cooling during the manufacturing processes. The rate of cooling can be controlled by drawing the strips in an electrically conducting fluid subject to a magnetic field, so that a final product of desired characteristics can be achieved. In this study, the problem of magneto-hydrodynamic (MHD) mixed convective flow and heat transfer of an electrically conducting fluid past a stretching surface under the influence of an applied magnetic field is analyzed. After transforming the governing equations with suitable dimensionless variables, numerical solutions are generated by an implicit finite-difference technique for the non-similar, coupled flow. To reveal the tendency of the solutions, typical results for the velocity and temperature profiles, the skin-friction coefficient, and the local Nusselt number are presented for different parameters.


Sign in / Sign up

Export Citation Format

Share Document