scholarly journals Existence and Global Attractivity of Positive Periodic Solutions for a Two-Species Competitive System with Stage Structure and Impulse

2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Changjin Xu ◽  
Daxue Chen

A class of nonautonomous two-species competitive system with stage structure and impulse is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantee the existence of at least a positive periodic solution, and, by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are presented. Finally, an illustrative example is given to demonstrate the correctness of the obtained results.

2010 ◽  
Vol 140 (5) ◽  
pp. 1061-1080 ◽  
Author(s):  
Jiaoyan Wang ◽  
Zhaosheng Feng

AbstractWe consider a non-autonomous competitive model with generalized functional responses for interaction among n species, the adult members of which are in competition. For each of the n species the model incorporates a distributed time delay which represents the time from birth to maturity of that species. Based on some comparison arguments, we discuss the permanence and extinction of the species. By virtue of the continuation theorem of coincidence degree theory, we prove the existence of a positive periodic solution. By means of constructing appropriate Lyapunov functionals, we obtain sufficient conditions for the uniqueness and the global stability of the periodic solution. Two examples are given to illustrate the feasibility of our main results.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Wenjie Qin ◽  
Zhijun Liu

A discrete time non-autonomous two-species competitive system with delays is proposed, which involves the influence of many generations on the density of species population. Sufficient conditions for permanence of the system are given. When the system is periodic, by using the continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete function, sufficient conditions which guarantee the existence and global attractivity of positive periodic solutions are obtained. As an application, examples and their numerical simulations are presented to illustrate the feasibility of our main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Chao Liu ◽  
Yuanke Li

We investigate a nonautonomous two-species competitive system with stage structure and double time delays due to maturation for two species, where toxic effect of toxin liberating species on nontoxic species is considered and the inhibiting effect is zero in absence of either species. Positivity and boundedness of solutions are analytically studied. By utilizing some comparison arguments, an iterative technique is proposed to discuss permanence of the species within competitive system. Furthermore, existence of positive periodic solutions is investigated based on continuation theorem of coincidence degree theory. By constructing an appropriate Lyapunov functional, sufficient conditions for global stability of the unique positive periodic solution are analyzed. Numerical simulations are carried out to show consistency with theoretical analysis.


2005 ◽  
Vol 2005 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Fengde Chen

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a delayed ratio-dependent predator-prey system with stage structure for predator. The approach involves some new technique of priori estimate. For the system without delay, by constructing a suitable Lyapunov function, some sufficient conditions which guarantee the existence of a unique global attractive positive periodic solution are obtained. Those results have further applications in population dynamics.


2012 ◽  
Vol 05 (02) ◽  
pp. 1250031
Author(s):  
Changjin Xu ◽  
Maoxin Liao

In this paper, by using the continuation theorem of coincidence degree theory, a sufficient condition of existence of positive periodic solutions is obtained for an stage-structured three-species predator–prey system with Beddington–DeAngelis and Holling IV functional response. By constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are presented. Our result is a good complement to the earlier publications.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Rouzimaimaiti Mahemuti ◽  
Zhidong Teng

We study a class of periodic general n-species competitive Lotka-Volterra systems with pure delays. Based on the continuation theorem of the coincidence degree theory and Lyapunov functional, some new sufficient conditions on the existence and global attractivity of positive periodic solutions for the n-species competitive Lotka-Volterra systems are established. As an application, we also examine some special cases of the system, which have been studied extensively in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Zhidong Teng

Two classes of periodicN-species Lotka-Volterra facultative mutualism systems with distributed delays are discussed. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin and the Lyapunov function method, some new sufficient conditions on the existence and global attractivity of positive periodic solutions are established.


2013 ◽  
Vol 291-294 ◽  
pp. 2412-2415
Author(s):  
Hui Li ◽  
Yi Fei Wang

In this paper, we investigate of a class of predator-prey system with rate stocking and time delay, the existence positive periodic solution by using coincidence degree theory. We obtain the sufficient conditions which guarantee existence of the positive periodic solution of the periodic system. Some new results obtained.


2009 ◽  
Vol 02 (04) ◽  
pp. 419-442 ◽  
Author(s):  
FENGYAN ZHOU

A new non-autonomous predator-prey system with the effect of viruses on the prey is investigated. By using the method of coincidence degree, some sufficient conditions are obtained for the existence of a positive periodic solution. Moreover, with the help of an appropriately chosen Lyapunov function, the global attractivity of the positive periodic solution is discussed. In the end, a numerical simulation is used to illustrate the feasibility of our results.


Author(s):  
Yongkun Li ◽  
Wenya Xing

Sufficient conditions are obtained for the existence of at least one positive periodic solution of a periodic cooperative model with delays and impulses by using Mawhin's continuation theorem of coincidence degree theory.


Sign in / Sign up

Export Citation Format

Share Document