scholarly journals BVS: A Lightweight Forward and Backward Secure Scheme for PMU Communications in Smart Grid

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Ren ◽  
Jun Song ◽  
Min Lei ◽  
Yi Ren

In smart grid, phaser measurement units (PMUs) can upload readings to utility centers via supervisory control and data acquisition (SCADA) or energy management system (EMS) to enable intelligent controlling and scheduling. It is critical to maintain the secrecy of readings so as to protect customers' privacy, together with integrity and source authentication for the reliability and stability of power scheduling. In particular, appealing security scheme needs to perform well in PMUs that usually have computational resource constraints, thus designed security protocols have to remain lightweight in terms of computation and storage. In this paper, we propose a family of schemes to solve this problem. They are public key based scheme (PKS), password based scheme (PWS) and billed value-based scheme (BVS). BVS can achieve forward and backward security and only relies on hash functions. Security analysis justifies that the proposed schemes, especially BVS, can attain the security goals with low computation and storage cost.

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3635 ◽  
Author(s):  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Yanjie Li ◽  
Wenyuan Xu

As a critical component in the smart grid, the Distribution Terminal Unit (DTU) dynamically adjusts the running status of the entire smart grid based on the collected electrical parameters to ensure the safe and stable operation of the smart grid. However, as a real-time embedded device, DTU has not only resource constraints but also specific requirements on real-time performance, thus, the traditional anomaly detection method cannot be deployed. To detect the tamper of the program running on DTU, we proposed a power-based non-intrusive condition monitoring method that collects and analyzes the power consumption of DTU using power sensors and machine learning (ML) techniques, the feasibility of this approach is that the power consumption is closely related to the executing code in CPUs, that is when the execution code is tampered with, the power consumption changes accordingly. To validate this idea, we set up a testbed based on DTU and simulated four types of imperceptible attacks that change the code running in ARM and DSP processors, respectively. We generate representative features and select lightweight ML algorithms to detect these attacks. We finally implemented the detection system on the windows and ubuntu platform and validated its effectiveness. The results show that the detection accuracy is up to 99.98% in a non-intrusive and lightweight way.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Mi ◽  
Ping Long ◽  
Yang Liu ◽  
Fengtian Kuang

Data deduplication serves as an effective way to optimize the storage occupation and the bandwidth consumption over clouds. As for the security of deduplication mechanism, users’ privacy and accessibility are of utmost concern since data are outsourced. However, the functionality of redundancy removal and the indistinguishability of deduplication labels are naturally incompatible, which bring about a lot of threats on data security. Besides, the access control of sharing copies may lead to infringement on users’ attributes and cumbersome query overheads. To balance the usability with the confidentiality of deduplication labels and securely realize an elaborate access structure, a novel data deduplication scheme is proposed in this paper. Briefly speaking, we drew support from learning with errors (LWE) to make sure that the deduplication labels are only differentiable during the duplication check process. Instead of authority matching, the proof of ownership (PoW) is then implemented under the paradigm of inner production. Since the deduplication label is light-weighted and the inner production is easy to carry out, our scheme is more efficient in terms of computation and storage. Security analysis also indicated that the deduplication labels are distinguishable only for duplication check, and the probability of falsifying a valid ownership is negligible.


Smart grid integration needs a highly accurate power scheduling to minimizes the losses and efficiently utilize the power supply to minimize the loss. Scheduling of a smart grid interface is monitored based on single or multiple objectives scheduler, where the smart grids are scheduled based on the measured parameters of power dispatch and the consumption model. Wherein, multi objective scheduling results in prominent result, the system is a linear monitoring model, where no previous observations are considered in making present decision. This constraint the accuracy of scheduling. In this paper, a new feedback scheduling operation based on feedback operation is proposed. the approach significantly feedbacks the past parameter variation and leads to an optimal power supply in smart grid interface. The experimental results obtained signifies a optimal improvement in the decision delay and power compensation.


Author(s):  
Luigi Coppolino ◽  
Salvatore D’Antonio ◽  
Ivano Alessandro Elia ◽  
Luigi Romano

Sign in / Sign up

Export Citation Format

Share Document