scholarly journals Nematicidal Constituents from the Essential Oil ofChenopodium AmbrosioidesAerial Parts

2011 ◽  
Vol 8 (s1) ◽  
pp. S143-S148 ◽  
Author(s):  
Chuan Qi Bai ◽  
Zhi Long Liu ◽  
Qi Zhi Liu

Essential oil of Chinese medicinal herb,Chenopodium ambrosioidesaerial parts was found to possess nematicidal activity against the root-knot nematodes,Meloidogyne incognita. The essential oil ofC. ambrosioideswas obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 27 components of the essential oil were identified. The principal compounds inC. ambrosioidesessential oil were (Z)-ascaridole (27.27%),ρ-cymene (19.05%), isoascaridole (14.75%),α-pinene (6.33%) andα-terpinene (5.12%). Bioactivity-guided chromatographic separation of the essential oil on repeated silica gel columns led to isolate three volatile components ((Z)-ascaridole,ρ-cymene and isoascaridole) from the essential oil. The essential oil and (Z)-ascaridole exhibited strong nematicidal activity againstM. incognitawith LC50values of 49.55 μg/mL and 32.79 μg/mL, respectively.ρ-Cymene and isoascaridole also possessed nematicidal activity againstM. incognitawith LC50values of 435.89 μg/mL and 1323.51 μg/mL, respectively but weaker than the crude essential oil.

2013 ◽  
Vol 68 (7-8) ◽  
pp. 307-312 ◽  
Author(s):  
Peng Hua Bai ◽  
Chun Qi Bai ◽  
Qi Zhi Liu ◽  
Shu Shan Du ◽  
Zhi Long Liu

Hydrodistilled essential oil from Rhododendron anthopogonoides Maxim. (Ericaceae) aerial parts was analysed by gas chromatography-mass spectrometry (GC-MS). A total of 42 compounds, accounting for 95.48% of the total oil, were identified. The main constituents of the essential oil were benzyl acetone (34.41%), nerolidol (10.19%), 1,4-cineole (8.41%), β-caryophyllene (5.63%), γ-elemene (5.10%), and spathulenol (3.06%). Four constituents were isolated from the essential oil based on fractionation. The essential oil of R. anthopogonoides possessed nematicidal activity against the root knot nematode (Meloidogyne incognita) with an LC50 value of 130.11 μg/ml. The main compound of the essential oil, benzyl acetone, exhibited nematicidal activity against M. incognita with an LC50 value of 74.17 μg/ ml while 1,4-cineole, nerolidol, and β-caryophyllene were not nematicidal at a concentration of 5 mg/ml. The essential oil of R. anthopogonoides and benzyl acetone show potential for their development as possible natural nematicides for the control of the root knot nematode


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The essential oil obtained from the aerial parts of Croton bonplandianus Baill. was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 37 compounds have been identified, representing 96.2% of the total oil. The main constituents were identified as β-caryophyllene (16.7%), germacrene D (14.7%), borneol (8.3%), Z-β-damascenone (6.(%), isobornyl acetate (6.2%), α-humulene (6.1%), germacrene A (5.2%) and caryophyllene oxide (4.5%). The oil was rich in sesquiterpene hydrocarbons (60.1%).


2011 ◽  
Vol 76 (4) ◽  
pp. 523-528 ◽  
Author(s):  
Ram Verma ◽  
Rajendra Padalia ◽  
Chandan Chanotiya ◽  
Amit Chauhan ◽  
Anju Yadav

Hydrodistilled essential oil of the aerial parts of Laggera crispata (Vahl) Hepper & Wood, collected from the Kumaon region of the western Himalayas was analysed by gas chromatography and gas chromatography-Mass Spectrometry. Eighty constituents, accounting for 83.9 % of the total oil composition, were identified. The oil was mainly dominated by sesquiterpenoids (45.3 %) and benzenoid compounds (33.9 %). Among them, 2,5-dimethoxy-p-cymene (32.2 %), 10-epi-?-eudesmol (14.7 %), ?-caryophyllene (6.9 %), and caryophyllene oxide (5.4 %) were major components of the oil.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1985749
Author(s):  
Jorge A. Pino ◽  
María Milagros Dueñas-Mendoza ◽  
Leoncio Solís-Quispe

The chemical composition of the essential oil from aerial parts of Minthostachys acris Schmidt-Leb. grown in Cuzco was studied. A total of 59 volatile compounds were identified by gas-chromatography-flame ionization detector and gas chromatography-mass spectrometry in the essential oil obtained by steam distillation, of which the most prominent were pulegone (54.4%), cis-menthone (11.0%), and thymol (6.3%).


2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800
Author(s):  
Rajesh K. Joshi

The essential oil composition from the aerial parts of Baccharoides lilacina (Dalzell & A. Gibson) M. R. Almeida was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 41 compounds have been identified, representing 97.4% of the total oil. The main constituents were identified as β-caryophyllene (27.7%), epi-α-cadinol (25.1%), caryophyllene oxide (9.9%), α-muurolol (7.6%), α-cadinene (6.1%) and α-cadinol 4.5%). The oil was found to be rich in oxygenated sesquiterpenes (47.1%) and sesquiterpene hydrocarbons (46.2%).


2011 ◽  
Vol 8 (4) ◽  
pp. 1937-1943 ◽  
Author(s):  
Zhi Long Liu ◽  
Shu Shan Du

Essential oil of chinese medicinal herb,Evodia rutaecarpaunripe fruits was found to possess insecticidal activity against maize weevils,Sitophilus zeamais and red flour beetlesTribolium castaneum. The essential oil ofE. rutaecarpawas obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 38 components of the essential oil were identified. The principal compounds inE. rutaecarpaessential oil wereβ-myrcene (17.7%), (Z)-β-ocimene (14.8%),α-phellandrene (14.7%),γ-terpinene (6.4%), linalool (5.7%) andβ-thujene (5.1%). Bioactivity-guided chromatographic separation of the essential oil on repeated silica gel columns led to isolate three volatile components (β-myrcene,β-ocimene andα-phellandrene) from the essential oil.α-Phellandrene was strongest fumigant againstS. zeamaisadults,T. castaneumadults andT. castaneumlarvae with LC50values of 15.61, 19.78 and 47.96 mg/L air, respectively.β-Myrcene andβ-ocimene also possess fumigant activity against the two species of insects but weaker fumigant activity than the crude essential oil.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 25-29 ◽  
Author(s):  
Ana P. Murray ◽  
María A. Frontera ◽  
María A. Tomas ◽  
María C. Mulet

The essential oil composition from the aerial parts of three Anacardiaceae growing in Bahía Blanca, Argentina was studied by gas chromatography and gas chromatography-mass spectrometry. The essential oils of S. longifolia and S. fasciculata have been studied for the first time. The major constituents were α-pinene (46.5%), β-pinene (15.1%) and α-phellandrene (10.1%) for S. longifolia and limonene (10.9%), β-phellandrene (6.16%) and α-phellandrene (5.6%) for S. fasciculata. The major components of the essential oil of S. areira were limonene (28.6%), α-phellandrene (10.1%), sabinene (9.2%) and camphene (9.2%) differing from the literature data. The essential oils from S. areira and S. longifolia exhibited a high biotoxicity in a brine shrimp assay with Artemia persimilis.


2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093306 ◽  
Author(s):  
Prabodh Satyal ◽  
William N. Setzer

Coriander and cilantro, the fruit and herb of Coriandrum sativum, are popular additives in various cuisines worldwide. The essential oils derived from coriander and cilantro are also popular and have shown some remarkable biological properties and health benefits. In this report, we have analyzed the essential oil compositions of 19 commercial coriander and 28 commercial cilantro essential oil samples by gas chromatography–mass spectrometry (GC–MS) techniques. In addition, 5 coriander and 4 cilantro commercial essential oil samples were analyzed by chiral GC–MS. Commercial coriander essential oil is dominated by linalool (62.2%-76.7%) with lesser quantities of α-pinene (0.3%-11.4%), γ-terpinene (0.6%-11.6%), and camphor (0.0%-5.5%). Commercial cilantro essential oil is composed largely of (2 E)-decenal (16.0%-46.6%), linalool (11.8%-29.8%), (2 E)-decen-1-ol (0.0%-24.7%), decanal (5.2%-18.7%), (2 E)-dodecenal (4.1%-8.7%), and 1-decanol (0.0%-9.5%). The enantiomeric distribution of linalool was 87% (+)-linalool:13% (−)-linalool in both coriander and cilantro essential oils, while α-pinene was 93% (+):7% (−) in coriander, 90% (+):10% (−) in cilantro; and (+)-camphor:(−)-camphor was 13%:87% in both essential oils. Chiral GC–MS analysis was able to detect an adulterated coriander essential oil sample. The data provided in this study serves to establish a baseline for future evaluations of these essential oils as well as a screen for authenticity or adulteration.


Sign in / Sign up

Export Citation Format

Share Document