scholarly journals One-Dimensional Constitutive Model of Shape Memory Alloy with an Empirical Kinetics Equation

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Li ◽  
Qingbin Li ◽  
Fan Zhang

Characteristics of NiTi shape memory alloy (SMA) and its constitutive model with an empirical kinetics equation were investigated in this paper. Firstly, the transformation characters of the NiTi SMA were obtained through a differential scanning calorimetry (DSC) analysis technology, and the properties during incomplete and discontinuous transformation process and the effects of plastic deformation on the transformation were studied. The uniaxial tension, SME, and constrained recovery process of NiTi SMA were examined through an improved 10KN universal material testing machine. Experimental results indicated that the phase transformation characters and the mechanical properties could be affected by the loading process considerably, and the plastic deformation should be taken into account. To simulate the characteristics of NiTi SMA more effectively, a one-dimensional constitutive model derived from the internal variable approach with the consideration of the plastic deformation was constructed based on the DSC and the uniaxial tension experimental results, and a new simple empirical kinetics equation was presented, with the transformation temperature parameters redefined according to the DSC experiment evidence. Comparison between the numerical and experimental results indicated that this constitutive model could simulate the phase transformation characters, the uniaxial tension, SME, and the constrained recovery behavior of NiTi SMA well.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4020
Author(s):  
Zhenwei Wu ◽  
Xiang Chen ◽  
Tao Fu ◽  
Hengwei Zheng ◽  
Yang Zhao

To date, research on the physical and mechanical behavior of nickel-titanium shape-memory alloy (NiTi SMA) has focused on the macroscopic physical properties, equation of state, strength constitution, phase transition induced by temperature and stress under static load, etc. The behavior of a NiTi SMA under high-strain-rate impact and the influence of voids have not been reported. In this present work, the behavior evolution of (100) single-crystal NiTi SMA and the influencing characteristics of voids under a shock wave of 1.2 km/s are studied by large-scale molecular dynamics calculation. The results show that only a small amount of B2 austenite is transformed into B19’ martensite when the NiTi sample does not pass through the void during impact compression, whereas when the shock wave passes through the hole, a large amount of martensite phase transformation and plastic deformation is induced around the hole; the existence of phase transformation and phase-transformation-induced plastic deformation greatly consumes the energy of the shock wave, thus making the width of the wave front in the subsequent propagation process wider and the peak of the foremost wave peak reduced. In addition, the existence of holes disrupts the orderly propagation of shock waves, changes the shock wave front from a plane to a concave surface, and reduces the propagation speed of shock waves. The calculation results show that the presence of pores in a porous NiTi SMA leads to significant martensitic phase transformation and plastic deformation induced by phase transformation, which has a significant buffering effect on shock waves. The results of this study provide great guidance for expanding the application of NiTi SMA in the field of shock.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
K. Boubaker

Shape memory alloys (SMA) are metals which can restore their initial shape after having been subjected to a deformation. They exhibit in general both nonlinear shape memory and pseudoelastic effects. In this paper, shape memory alloy (SMA) and its constitutive model with an empirical kinetics equation are investigated. A new formulation to the martensite fraction-dependent Young modulus has been adopted and the plastic deformation was taken into account. To simulate the variations, a one-dimensional constitutive model was constructed based on the uniaxial tension features.


2012 ◽  
Vol 23 (10) ◽  
pp. 1143-1160 ◽  
Author(s):  
Walid Khalil ◽  
Alain Mikolajczak ◽  
Céline Bouby ◽  
Tarak Ben Zineb

In this article, we propose a finite element numerical tool adapted to a Fe-based shape memory alloy structural analysis, based on a developed constitutive model that describes the effect of phase transformation, plastic sliding, and their interactions on the thermomechanical behavior. This model was derived from an assumed expression of the Gibbs free energy taking into account nonlinear interaction quantities related to inter- and intragranular incompatibilities as well as mechanical and chemical quantities. Two scalar internal variables were considered to describe the phase transformation and plastic sliding effects. The hysteretic and specific behavior patterns of Fe-based shape memory alloy during reverse transformation were studied by assuming a dissipation expression. The proposed model effectively describes the complex thermomechanical loading paths. The numerical tool derived from the implicit resolution of the nonlinear partial derivative constitutive equations was implemented into the Abaqus® finite element code via the User MATerial (UMAT) subroutine. After tests to verify the model for homogeneous and heterogeneous thermomechanical loadings, an example of Fe-based shape memory alloy application was studied, which corresponds to a tightening system made up of fishplates for crane rails. The results we obtained were compared to experimental ones.


2019 ◽  
Vol 31 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Bingfei Liu ◽  
Qingfei Wang ◽  
Kai Yin ◽  
Liwen Wang

A theoretical model for the crack monitoring of the shape memory alloy intelligent concrete is presented in this work. The mechanical properties of shape memory alloy materials are first given by the experimental test. The one-dimensional constitutive model of the shape memory alloys is reviewed by degenerating from a three-dimensional model, and the behaviors of the shape memory alloys under different working conditions are then discussed. By combining the electrical resistivity model and the one-dimensional shape memory alloy constitutive model, the crack monitoring model of the shape memory alloy intelligent concrete is given, and the relationships between the crack width of the concrete and the electrical resistance variation of the shape memory alloy materials for different crack monitoring processes of shape memory alloy intelligent concrete are finally presented. The numerical results of the present model are compared with the published experimental data to verify the correctness of the model.


2009 ◽  
Vol 79-82 ◽  
pp. 1209-1212
Author(s):  
Shuang Shuang Sun ◽  
Jing Dong

Based on experimental results reported in the reference, Liang-Rogers’ constitutive model for SMA is used to simulate the stress-strain curves of NiTi shape memory alloy films under uniaxial tension with isothermal conditions. The effects of film compositions and temperature on the tensile behavior of NiTi shape memory alloy films are discussed. By comparing the simulation results with the experimental results, it is found that the simulation curves agree basically with the experimental curves except that the phase-transformation regions are wider in the simulation curves. This demonstrates that the Liang-Rogers’ model can be used to predict the thermomechanical behavior of shape memory alloy films roughly. This study provides some theoretical foundation for the quantitative description and prediction of the actuation mechanism when shape memory alloy films are used as micro-actuators.


Aerospace ◽  
2004 ◽  
Author(s):  
Mohammad H. Elahinia ◽  
Mehdi Ahmadian

The phenomenological models for SMAs, consisting of a thermodynamics based- constitutive and a phase transformation kinetics model, are the most widely used models for engineering applications. The existing phenomenological models are able to predict the behavior of SMA-actuated systems in most cases, except for cases arising from a simultaneous change in temperature and stress of the SMA elements, as is documented in this study. For such cases, the existing models fail to adequately predict the behavior of SMA elements undergoing complex thermomechanical loadings. A rotary SMA-actuated robotic arm is modeled using the existing constitutive models, in order to document the conditions under which the models fail. The model is verified against the experimental results, to document that under certain conditions, the model is not able to predict the behavior of the SMA-actuated manipulator. The phenomenological models discrepancy is also studied experimentally using a dead-weight that is actuated by an SMA wire.


2008 ◽  
Vol 56 ◽  
pp. 84-91
Author(s):  
Tadashige Ikeda

A simple yet accurate macroscopic constitutive model of shape memory alloys has been developed. The features of this model are (1) energy-based phase transformation criterion, (2) one-dimensional phase transformation rule based on a micromechanical viewpoint, (3) dissipated energy with a form of a sum of two exponential functions, (4) duplication of the strain rate effect, and (5) adaptability to multi-phase transformation. This model is further improved to be able to express stress-strain relationships such that the reverse transformation starts at a higher stress than the martensitic transformation starts. Here, the ideal reversible transformation temperature is empirically described by a function of the martensite volume fraction. In this paper, an outline of our model is given, where the improvement is introduced. Then, it is shown that the model can quantitatively duplicate the major and minor hysteresis loops, strain rate effect, and asymmetry in tension and compression on the stress-strain relationship. And that it can also duplicate the stress-strain relationships having the reverse transformation start stress higher than the forward one.


Sign in / Sign up

Export Citation Format

Share Document