Constitutive Model for Phase Transformation and Plastic Deformation of Shape Memory Alloy

2016 ◽  
Vol 2016 (0) ◽  
pp. OS06-12
Author(s):  
Tadashige IKEDA ◽  
Kota YAMAMOTO
2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Li ◽  
Qingbin Li ◽  
Fan Zhang

Characteristics of NiTi shape memory alloy (SMA) and its constitutive model with an empirical kinetics equation were investigated in this paper. Firstly, the transformation characters of the NiTi SMA were obtained through a differential scanning calorimetry (DSC) analysis technology, and the properties during incomplete and discontinuous transformation process and the effects of plastic deformation on the transformation were studied. The uniaxial tension, SME, and constrained recovery process of NiTi SMA were examined through an improved 10KN universal material testing machine. Experimental results indicated that the phase transformation characters and the mechanical properties could be affected by the loading process considerably, and the plastic deformation should be taken into account. To simulate the characteristics of NiTi SMA more effectively, a one-dimensional constitutive model derived from the internal variable approach with the consideration of the plastic deformation was constructed based on the DSC and the uniaxial tension experimental results, and a new simple empirical kinetics equation was presented, with the transformation temperature parameters redefined according to the DSC experiment evidence. Comparison between the numerical and experimental results indicated that this constitutive model could simulate the phase transformation characters, the uniaxial tension, SME, and the constrained recovery behavior of NiTi SMA well.


2012 ◽  
Vol 23 (10) ◽  
pp. 1143-1160 ◽  
Author(s):  
Walid Khalil ◽  
Alain Mikolajczak ◽  
Céline Bouby ◽  
Tarak Ben Zineb

In this article, we propose a finite element numerical tool adapted to a Fe-based shape memory alloy structural analysis, based on a developed constitutive model that describes the effect of phase transformation, plastic sliding, and their interactions on the thermomechanical behavior. This model was derived from an assumed expression of the Gibbs free energy taking into account nonlinear interaction quantities related to inter- and intragranular incompatibilities as well as mechanical and chemical quantities. Two scalar internal variables were considered to describe the phase transformation and plastic sliding effects. The hysteretic and specific behavior patterns of Fe-based shape memory alloy during reverse transformation were studied by assuming a dissipation expression. The proposed model effectively describes the complex thermomechanical loading paths. The numerical tool derived from the implicit resolution of the nonlinear partial derivative constitutive equations was implemented into the Abaqus® finite element code via the User MATerial (UMAT) subroutine. After tests to verify the model for homogeneous and heterogeneous thermomechanical loadings, an example of Fe-based shape memory alloy application was studied, which corresponds to a tightening system made up of fishplates for crane rails. The results we obtained were compared to experimental ones.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiang Chen ◽  
Bin Chen ◽  
Xianghe Peng ◽  
Xiaoqing Jin ◽  
Ying Ma ◽  
...  

The assembling process of Ni47Ti44Nb9 alloy pipe joints considering the phase transformation and plasticity was numerically simulated for the first time with a developed constitutive model. The simulated process was based on the experimental material parameters, which were determined with the experimental tensile results of Ni47Ti44Nb9 shape memory alloy (SMA) and steel bars. The results showed that, after assembly, the Mises stress distributed uniformly along the longitudinal direction of the NiTiNb joint, but nonuniformly along the radial direction. The maximum σeq does not appear at the inner wall of the joints due to the coupling effect of the plastic deformation and the recoverable transformation. The contact pressure distributed uniformly along the circumferential direction, but nonuniformly along the longitudinal direction. The sizes of the SMA joint and the pipe should be properly matched to ensure contact during the stage of the rapid reverse phase transformation to obtain stable connection performance. The pull-out force was also computed, and the results were in good agreement with the experimental results. The results obtained can provide available information for the optimization of the design parameters of the high-performance SMA pipe-joint, such as inner diameter and assembly clearance.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4020
Author(s):  
Zhenwei Wu ◽  
Xiang Chen ◽  
Tao Fu ◽  
Hengwei Zheng ◽  
Yang Zhao

To date, research on the physical and mechanical behavior of nickel-titanium shape-memory alloy (NiTi SMA) has focused on the macroscopic physical properties, equation of state, strength constitution, phase transition induced by temperature and stress under static load, etc. The behavior of a NiTi SMA under high-strain-rate impact and the influence of voids have not been reported. In this present work, the behavior evolution of (100) single-crystal NiTi SMA and the influencing characteristics of voids under a shock wave of 1.2 km/s are studied by large-scale molecular dynamics calculation. The results show that only a small amount of B2 austenite is transformed into B19’ martensite when the NiTi sample does not pass through the void during impact compression, whereas when the shock wave passes through the hole, a large amount of martensite phase transformation and plastic deformation is induced around the hole; the existence of phase transformation and phase-transformation-induced plastic deformation greatly consumes the energy of the shock wave, thus making the width of the wave front in the subsequent propagation process wider and the peak of the foremost wave peak reduced. In addition, the existence of holes disrupts the orderly propagation of shock waves, changes the shock wave front from a plane to a concave surface, and reduces the propagation speed of shock waves. The calculation results show that the presence of pores in a porous NiTi SMA leads to significant martensitic phase transformation and plastic deformation induced by phase transformation, which has a significant buffering effect on shock waves. The results of this study provide great guidance for expanding the application of NiTi SMA in the field of shock.


Author(s):  
Francis R. Phillips ◽  
Daniel Martin ◽  
Dimitris C. Lagoudas ◽  
Robert W. Wheeler

Shape memory alloys (SMAs) are unique materials capable of undergoing a thermo-mechanically induced, reversible, crystallographic phase transformation. As SMAs are utilized across a variety of applications, it is necessary to understand the internal changes that occur throughout the lifetime of SMA components. One of the key limitations to the lifetime of a SMA component is the response of SMAs to fatigue. SMAs are subject to two kinds of fatigue, namely structural fatigue due to cyclic mechanical loading which is similar to high cycle fatigue, and functional fatigue due to cyclic phase transformation which typical is limited to the low cycle fatigue regime. In cases where functional fatigue is due to thermally induced phase transformation in contrast to being mechanically induced, this form of fatigue can be further defined as actuation fatigue. Utilizing X-ray computed microtomography, it is shown that during actuation fatigue, internal damage such as cracks or voids, evolves in a non-linear manner. A function is generated to capture this non-linear internal damage evolution and introduced into a SMA constitutive model. Finally, it is shown how the modified SMA constitutive model responds and the ability of the model to predict actuation fatigue lifetime is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document