A constitutive model for Fe-based shape memory alloy considering martensitic transformation and plastic sliding coupling: Application to a finite element structural analysis

2012 ◽  
Vol 23 (10) ◽  
pp. 1143-1160 ◽  
Author(s):  
Walid Khalil ◽  
Alain Mikolajczak ◽  
Céline Bouby ◽  
Tarak Ben Zineb

In this article, we propose a finite element numerical tool adapted to a Fe-based shape memory alloy structural analysis, based on a developed constitutive model that describes the effect of phase transformation, plastic sliding, and their interactions on the thermomechanical behavior. This model was derived from an assumed expression of the Gibbs free energy taking into account nonlinear interaction quantities related to inter- and intragranular incompatibilities as well as mechanical and chemical quantities. Two scalar internal variables were considered to describe the phase transformation and plastic sliding effects. The hysteretic and specific behavior patterns of Fe-based shape memory alloy during reverse transformation were studied by assuming a dissipation expression. The proposed model effectively describes the complex thermomechanical loading paths. The numerical tool derived from the implicit resolution of the nonlinear partial derivative constitutive equations was implemented into the Abaqus® finite element code via the User MATerial (UMAT) subroutine. After tests to verify the model for homogeneous and heterogeneous thermomechanical loadings, an example of Fe-based shape memory alloy application was studied, which corresponds to a tightening system made up of fishplates for crane rails. The results we obtained were compared to experimental ones.

Author(s):  
Xiangjun Jiang ◽  
Jin Huang ◽  
Yongkun Wang ◽  
Fengqun Pan ◽  
Baotong Li ◽  
...  

A phenomenological constitutive model is developed to describe the uniaxial transformation ratcheting behaviors of super–elastic shape memory alloy (SMA) by employing a cosine–type phase transformation equation with the initial martensite evolution coefficient that can capture the feature of the predictive residual martensite accumulation evolution and the nonlinear hysteresis loop on a finite element (FE) analysis framework. The effect of the applied loading level on transformation ratcheting are considered in the proposed model. The evolutions of transformation ratcheting and transformation stresses are constructed as the function of the accumulated residual martensite volume fraction. The FE implementation of the proposed model is carried out for the numerical analysis of transformation ratcheting of the SMA bar element. The integration algorithm and the expression of consistent tangent modulus are deduced in a new form for the forward and reverse transformation. The numerical results are compared with those of existing model and the experimental results to show the validity of the proposed model and its FE implementation in transformation ratcheting. Finally, a FE modeling is established for a repeated preload analysis of SMA bolted joint


2012 ◽  
Vol 24 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Mostafa Baghani ◽  
Reza Naghdabadi ◽  
Jamal Arghavani

Shape memory polymers commonly experience both finite deformations and arbitrary thermomechanical loading conditions in engineering applications. This motivates the development of three-dimensional constitutive models within the finite deformation regime. In the present study, based on the principles of continuum thermodynamics with internal variables, a three-dimensional finite deformation phenomenological constitutive model is proposed taking its basis from the recent model in the small strain regime proposed by Baghani et al. (2012). In the constitutive model derivation, a multiplicative decomposition of the deformation gradient into elastic and inelastic stored parts (in each phase) is adopted. Moreover, employing the mixture rule, the Green–Lagrange strain tensor is related to the rubbery and glassy parts. In the constitutive model, the evolution laws for internal variables are derived during both cooling and heating thermomechanical loadings. Furthermore, we present the time-discrete form of the proposed constitutive model in the implicit form. Using the finite element method, we solve several boundary value problems, that is, tension and compression of bars and a three-dimensional beam made of shape memory polymers, and investigate the model capabilities as well as its numerical counterpart. The model is validated by comparing the predicted results with experimental data reported in the literature that shows a good agreement.


2017 ◽  
Vol 28 (19) ◽  
pp. 2853-2871 ◽  
Author(s):  
Siavash Jafarzadeh ◽  
Mahmoud Kadkhodaei

In this article, a previously developed constitutive model for ferromagnetic shape memory alloys is phenomenologically enhanced using experimental observations. A modified phase diagram along with a method for calibration of the required model parameters is further presented. The model is implemented into a user material subroutine to equip commercial finite element software ABAQUS with the capability of simulating magneto-mechanical behaviors of ferromagnetic shape memory alloys. A combined convergence scheme is employed to solve the implicit equations. The proposed model together with the presented numerical solution is shown to be able to study shape memory effect and pseudoelasticity at different constant magnetic fields. The simulated magnetic loading/unloading cycles at different constant stresses are found to be well-fitted to the experimental findings. As a practical application of the ferromagnetic shape memory alloy coupled magneto-mechanical response, a spring actuator (a bias spring serially connected to one ferromagnetic shape memory alloy element) is investigated, and the numerical predictions are shown to be in a good agreement with available experimental results. As a novel case, geometrically graded NiMnGa elements are also introduced and are simulated with the use of this approach.


2019 ◽  
Vol 30 (8) ◽  
pp. 1163-1177
Author(s):  
Canjun Li ◽  
Zhen Zhou ◽  
Yazhi Zhu

Super-elastic shape memory alloys are widely used in structural engineering fields due to their encouraging super-elasticity and energy dissipation capability. Large-size shape memory alloy bars often present significant residual strains after unloading, which emphasizes the necessity of developing a residual strain effect–coupled constitutive model to predict well the performance of shape memory alloy–based structures. First, this article experimentally studies the hysteretic behavior of NiTi shape memory alloy bars under quasi-static loading conditions and investigates the effects of cyclic numbers and strain amplitudes on residual strain. Second, a concept of cumulative transformation strain is preliminarily introduced into a phenomenological Lagoudas model. A uniaxial constitutive model for shape memory alloy bars including the residual strain is proposed. By using OpenSees platform, numerical simulations of shape memory alloy bars are conducted—the results of which indicate that the proposed model can accurately capture the hysteretic behavior of shape memory alloys. The predicted residual strains show a good agreement to experimental results, which demonstrates the desirable efficiency of the proposed model.


Author(s):  
Saeid Shakiba ◽  
Aghil Yousefi-Koma ◽  
Moosa Ayati

In this study, a constitutive model based on Liang-Rogers’s relations is developed to characterize the effect of the excitation frequency in the hysteresis of shape memory alloys. Shape memory alloys are good candidates as smart actuators because of their high strain and power density, although the complex hysteresis behavior barricades their usage. Although constitutive models are one of the most potent methods to predict the shape memory alloys behavior, they cannot consider the effect of excitation frequency in active applications. In this paper, the Liang-Rogers model is modified to consider this effect using a linear relation between the excitation frequency and martensite transformation temperatures. A shape memory alloy-driven actuator as a morphing wing is employed to characterize the frequency effect on shape memory alloy hysteresis. Experimental results show that the hysteresis is widened when the excitation frequency increases. The modeling results show that the original model significantly fails to predict the correct behavior when the frequency increases, whereas the proposed model can adequately handle the frequency effect on the behavior of the shape memory alloy-driven actuator.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1592 ◽  
Author(s):  
Xiangjun Jiang ◽  
Jin Huang ◽  
Yongkun Wang ◽  
Baotong Li ◽  
Jingli Du ◽  
...  

A macroscopic constitutive model is proposed in this research to reproduce the uniaxial transition ratcheting behaviors of the superelastic shape memory alloy (SMA) undergoing cyclic loading, based on the cosine-type phase transition equation with the initial martensite evolution coefficient that provides the predictive residual martensite accumulation evolution and the nonlinear feature of hysteresis loop. The calculated results are compared with the experimental results to show the validity of the present computational procedure in transition ratcheting. Finite element implementation for the self-loosening behavior of the superelastic SMA bolt is then carried out based on the proposed constitutive model to analyze the curves of stress-strain responses on the bolt bar, clamping force reduction law, dissipation energy change law of the bolted joint for different external loading cases, and preload force of the bolt.


2021 ◽  
pp. 1-37
Author(s):  
Mengqian Zhang ◽  
Theocharis Baxevanis

Abstract A 3D finite-strain constitutive model for shape memory alloys (SMAs) is proposed. The model can efficiently describe reversible phase transformation from austenite to self-accommodated and/or oriented martensite, (re)orientation of martensite variants, minor loops, latent heat effects, and tension–compression asymmetry based on the Eulerian logarithmic strain and the corotational logarithmic objective rate. It further accounts for transformation volume contraction, smooth thermomechanical response, temperature dependence of the critical force required for (re)orientation, temperature and load dependence of the hysteresis width, asymmetry between forward and reverse phase transformation, and is flexible enough to address the deformation response in the concurrent presence of several phases, i.e., when austenite, self-accommodated and oriented martensite co-exist in the microstructure. The ability of the proposed model to describe the aforementioned deformation response characteristics of SMAs under multiaxial, thermomechanical, nonproportional loading relies on the set of three independent internal variables, i.e., the average volume fraction of martensite variants, their preferred direction, and the magnitude of the induced inelastic strain, that further allow for an implicit description of a fourth internal variable, the volume fraction of oriented as opposed to self-accommodated martensite. The calibration of the model and its numerical implementation in an efficient scheme are presented. The model is validated against experimental results associated with complex thermomechanical paths, including tension/compression/torsion experiments and the efficiency of its numerical implementation is verified with simulations of the response of a biomedical superelastic SMA stent and an SMA spring actuator.


Sign in / Sign up

Export Citation Format

Share Document