scholarly journals A Novel Technique for Rotor Bar Failure Detection in Single-Cage Induction Motor Using FEM and MATLAB/SIMULINK

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Seyed Abbas Taher ◽  
Majid Malekpour

In this article, a new fault detection technique is proposed for squirrel cage induction motor (SCIM) based on detection of rotor bar failure. This type of fault detection is commonly carried out, while motor continues to work at a steady-state regime. Recently, several methods have been presented for rotor bar failure detection based on evaluation of the start-up transient current. The proposed method here is capable of fault detection immediately after bar breakage, where a three-phase SCIM is modelled in finite element method (FEM) using Maxwell2D software. Broken rotor bars are then modelled by the corresponding outer rotor impedance obtained by GA, thereby presenting an analogue model extracted from FEM to be simulated in a flexible environment such as MATLAB/SIMULINK. To improve the failure recognition, the stator current signal was analysed using discrete wavelet transform (DWT).

2018 ◽  
Vol 7 (3.17) ◽  
pp. 145
Author(s):  
Yushaizad Yusof ◽  
Kamarulzaman Mat

High power induction motor (IM) is widely used in industries and recently has been put into electric vehicle as the replacement of the internal combustion engine. In order to study the characteristics of the IM, a model of three-phase squirrel cage induction motor is designed and developed using MATLAB Simulink tool. Synchronous reference frame (SRF) technique is implemented to simplify the equivalent circuit model. Based on state space form, a flux linkage equation is developed using three stages transformation matrices. It demonstrated a good performance with fast response for AC start-up test, where simulated induced torque, rotor speed, mechanical output power, efficiency, slip and stator current waveforms were generated accordingly.  Indeed, the developed IM model can be used as a starting platform to further study and analyses the IM drives performance for electric vehicle application. 


2020 ◽  
Vol 10 (21) ◽  
pp. 7572 ◽  
Author(s):  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anouar Belahcen ◽  
Ants Kallaste ◽  
Anton Rassõlkin ◽  
...  

This paper presents a hybrid finite element method (FEM)–analytical model of a three-phase squirrel cage induction motor solved using parallel processing for reducing the simulation time. The growing development in artificial intelligence (AI) techniques can lead towards more reliable diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data under various conditions to train them. These data are difficult to obtain from the industries because they contain low numbers of possible faulty cases, as well as from laboratories because a limited number of motors can be broken for testing purposes. The only feasible solution is mathematical models, which in the long run can become part of advanced diagnostic techniques. The benefits of analytical and FEM models for their speed and accuracy respectively can be exploited by making a hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel fashion is presented. The results depict that by dividing the rotor steps among several processors working in parallel, the simulation time reduces considerably. The simulation results under healthy and broken rotor bar cases are compared with those taken from a laboratory setup for validation.


2020 ◽  
Vol 10 (14) ◽  
pp. 4965
Author(s):  
Yordanos Dametw Mamuya ◽  
Yih-Der Lee ◽  
Jing-Wen Shen ◽  
Md Shafiullah ◽  
Cheng-Chien Kuo

Fault location with the highest possible accuracy has a significant role in expediting the restoration process, after being exposed to any kind of fault in power distribution grids. This paper provides fault detection, classification, and location methods using machine learning tools and advanced signal processing for a radial distribution grid. The three-phase current signals, one cycle before and one cycle after the inception of the fault are measured at the sending end of the grid. A discrete wavelet transform (DWT) is employed to extract useful features from the three-phase current signal. Standard statistical techniques are then applied onto DWT coefficients to extract the useful features. Among many features, mean, standard deviation (SD), energy, skewness, kurtosis, and entropy are evaluated and fed into the artificial neural network (ANN), Multilayer perceptron (MLP), and extreme learning machine (ELM), to identify the fault type and its location. During the training process, all types of faults with variations in the loading and fault resistance are considered. The performance of the proposed fault locating methods is evaluated in terms of root mean absolute percentage error (MAPE), root mean squared error (RMSE), Willmott’s index of agreement (WIA), coefficient of determination ( R 2 ), and Nash-Sutcliffe model efficiency coefficient (NSEC). The time it takes for training and testing are also considered. The proposed method that discrete wavelet transforms with machine learning is a very accurate and reliable method for fault classifying and locating in both a balanced and unbalanced radial system. 100% fault detection accuracy is achieved for all types of faults. Except for the slight confusion of three line to ground (3LG) and three line (3L) faults, 100% classification accuracy is also achieved. The performance measures show that both MLP and ELM are very accurate and comparative in locating faults. The method can be further applied for meshed networks with multiple distributed generators. Renewable generations in the form of distributed generation units can also be studied.


Sign in / Sign up

Export Citation Format

Share Document