Modeling, Simulation and Analysis of Induction Motor for Electric Vehicle Application

2018 ◽  
Vol 7 (3.17) ◽  
pp. 145
Author(s):  
Yushaizad Yusof ◽  
Kamarulzaman Mat

High power induction motor (IM) is widely used in industries and recently has been put into electric vehicle as the replacement of the internal combustion engine. In order to study the characteristics of the IM, a model of three-phase squirrel cage induction motor is designed and developed using MATLAB Simulink tool. Synchronous reference frame (SRF) technique is implemented to simplify the equivalent circuit model. Based on state space form, a flux linkage equation is developed using three stages transformation matrices. It demonstrated a good performance with fast response for AC start-up test, where simulated induced torque, rotor speed, mechanical output power, efficiency, slip and stator current waveforms were generated accordingly.  Indeed, the developed IM model can be used as a starting platform to further study and analyses the IM drives performance for electric vehicle application. 

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Seyed Abbas Taher ◽  
Majid Malekpour

In this article, a new fault detection technique is proposed for squirrel cage induction motor (SCIM) based on detection of rotor bar failure. This type of fault detection is commonly carried out, while motor continues to work at a steady-state regime. Recently, several methods have been presented for rotor bar failure detection based on evaluation of the start-up transient current. The proposed method here is capable of fault detection immediately after bar breakage, where a three-phase SCIM is modelled in finite element method (FEM) using Maxwell2D software. Broken rotor bars are then modelled by the corresponding outer rotor impedance obtained by GA, thereby presenting an analogue model extracted from FEM to be simulated in a flexible environment such as MATLAB/SIMULINK. To improve the failure recognition, the stator current signal was analysed using discrete wavelet transform (DWT).


1994 ◽  
Vol 31 (2) ◽  
pp. 167-183 ◽  
Author(s):  
J. Perahia ◽  
C. V. Nayar

Generalized machine theory applied to a three phase twin stator squirrel-cage induction motor This paper uses generalized machine theory to develop an equivalent circuit model of a three phase induction motor comprised of two independently housed stator windings with one stator housing moveable, and a single squirrel-cage rotor whose bars extend the full length of the two stators.


2020 ◽  
Vol 10 (21) ◽  
pp. 7572 ◽  
Author(s):  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anouar Belahcen ◽  
Ants Kallaste ◽  
Anton Rassõlkin ◽  
...  

This paper presents a hybrid finite element method (FEM)–analytical model of a three-phase squirrel cage induction motor solved using parallel processing for reducing the simulation time. The growing development in artificial intelligence (AI) techniques can lead towards more reliable diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data under various conditions to train them. These data are difficult to obtain from the industries because they contain low numbers of possible faulty cases, as well as from laboratories because a limited number of motors can be broken for testing purposes. The only feasible solution is mathematical models, which in the long run can become part of advanced diagnostic techniques. The benefits of analytical and FEM models for their speed and accuracy respectively can be exploited by making a hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel fashion is presented. The results depict that by dividing the rotor steps among several processors working in parallel, the simulation time reduces considerably. The simulation results under healthy and broken rotor bar cases are compared with those taken from a laboratory setup for validation.


Author(s):  
Waleed Khalid Shakir Al-Jubori ◽  
Yasir Abdulhafedh Ahmed

Study and analysis the effect of variable applied voltage on SCIM performances based on FEA is presented. Three phase squirrel cage induction motor SCIM has been investigated and numerically simulated using finite element method (FEM) with the aid of ANSYS software (RMxprt and Maxwell 2D/3D). This research presents study and analysis of the effects of the voltage variation on performance and efficiency of the three-phase induction motor of the squirrel cage type. The Finite Elements Analysis Method FEA is used as one of the best methods for analysis and simulation of electrical motors in addition to the possibility of dealing with nonlinear equations, Since the induction motor is a complex electromagnetic reaction, the researchers used the ANSYS program to represent and analyze the performance of the motor under variable supply voltage. The case studied in this research is three phases, 380V, 50Hz, 2.2kW, induction motor that widely use in industrial application. The aim of this research is to study the effect of voltage variation on efficiency, current value, power factor and torque of SCIM.  The RMxprt software has been used for modeling and simulating the induction motor and calculating the values of phases currents, input and output power in additional of overall efficiency at steady state condition. The next stage of the research is creating Maxwell 2-D design from the base model of RMxprt software, Maxwell 2-D model has the ability to computing the distribution of magnetic field and explaining the performance under steady-state operation. The obtained results show significant reduction of motor performance due to the effect of variation of apply voltage.


Sign in / Sign up

Export Citation Format

Share Document