scholarly journals A Halpern-Mann Type Iteration for Fixed Point Problems of a Relatively Nonexpansive Mapping and a System of Equilibrium Problems

2011 ◽  
Vol 2011 ◽  
pp. 1-22
Author(s):  
Utith Inprasit ◽  
Weerayuth Nilsrakoo

A new modified Halpern-Mann type iterative method is constructed. Strong convergence of the scheme to a common element of the set of fixed points of a relatively nonexpansive mapping and the set of common solutions to a system of equilibrium problems in a uniformly convex real Banach space which is also uniformly smooth is proved. The results presented in this work improve on the corresponding ones announced by many others.


2020 ◽  
Vol 36 (1) ◽  
pp. 119-126
Author(s):  
M. O. NNAKWE

"Let X be a 2-uniformly convex and uniformly smooth real Banach space. In this paper, an iterative algorithmofKrasnosel’skii-typeis constructed and used to approximate a common solution ofsplit generalized mixed equalityequilibrium problems(SGMEEP)andsplit equality fixed point problems(SEFPP)forquasi-ψ-nonexpansive maps.A strong convergence theorem of the sequence generated by this algorithm is proved without imposing anycompactness-type condition on either the operators or the space considered. The theorem proved improves andcomplements important recent results in the literature. "



2018 ◽  
Vol 1 (30) ◽  
pp. 67-77
Author(s):  
Hieu Trung Nguyen ◽  
Tien Cam Truong

In this paper, we propose a new hybrid iteration for finding a common element of solution set of equilibrium problems and the fixed point set of mappings  satisfying condi- tion (Φ-Eµ), and establish the convergence of this iteration in uniformly convex and uniformly smooth Banach spaces. From this theorem, we geta corollary for the convergence for equilibrium problems and mappings satisfying condition (Eµ) in real Hilbert spaces. In addition, an example is provided to illustrate for the convergence of equilibrium problems and mappings satisfying condition (Φ-Eµ). These results are the generations and improvements of some  existing results in the literature



2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Saud Fahad Aldosary ◽  
Watcharaporn Cholamjiak ◽  
Rehan Ali ◽  
Mohammad Farid

In this paper, we consider a generalized mixed variational-like inequality problem and prove a Minty-type lemma for its related auxiliary problems in a real Banach space. We prove the existence of a solution of these auxiliary problems and also prove some properties for the solution set of generalized mixed variational-like inequality problem. Furthermore, we introduce and study an inertial hybrid iterative method for solving the generalized mixed variational-like inequality problem involving Bregman relatively nonexpansive mapping in Banach space. We study the strong convergence for the proposed algorithm. Finally, we list some consequences and computational examples to emphasize the efficiency and relevancy of the main result.



2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Lijuan Zhang ◽  
Hui Tong ◽  
Ying Liu

An iterative algorithm for finding a common element of the set of common fixed points of a finite family of asymptotically nonextensive nonself mappings and the set of solutions for equilibrium problems is discussed. A strong convergence theorem of common element is established in a uniformly smooth and uniformly convex Banach space.



2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Yekini Shehu

We construct a new Halpern type iterative scheme by hybrid methods and prove strong convergence theorem for approximation of a common fixed point of two countable families of weak relatively nonexpansive mappings in a uniformly convex and uniformly smooth real Banach space using the properties of generalizedf-projection operator. Using this result, we discuss strong convergence theorem concerning generalH-monotone mappings. Our results extend many known recent results in the literature.



2010 ◽  
Vol 2010 ◽  
pp. 1-27 ◽  
Author(s):  
Jian-Wen Peng ◽  
Soon-Yi Wu ◽  
Jen-Chih Yao

We introduce a new iterative scheme based on extragradient method and viscosity approximation method for finding a common element of the solutions set of a system of equilibrium problems, fixed point sets of an infinite family of nonexpansive mappings, and the solution set of a variational inequality for a relaxed cocoercive mapping in a Hilbert space. We prove strong convergence theorem. The results in this paper unify and generalize some well-known results in the literature.



2016 ◽  
Vol 25 (1) ◽  
pp. 107-120
Author(s):  
T. M. M. SOW ◽  
◽  
C. DIOP ◽  
N. DJITTE ◽  
◽  
...  

For q > 1 and p > 1, let E be a 2-uniformly convex and q-uniformly smooth or p- uniformly convex and 2-uniformly smooth real Banach space and F : E → E∗, K : E∗ → E be bounded and strongly monotone maps with D(K) = R(F) = E∗. We construct a coupled iterative process and prove its strong convergence to a solution of the Hammerstein equation u + KF u = 0. Futhermore, our technique of proof is of independent of interest.



2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Yekini Shehu

We construct a new iterative scheme by hybrid methods and prove strong convergence theorem for approximation of a common fixed point of two countable families of closed relatively quasi-nonexpansive mappings which is also a solution to a system of equilibrium problems in a uniformly smooth and strictly convex real Banach space with Kadec-Klee property using the properties of generalizedf-projection operator. Using this result, we discuss strong convergence theorem concerning variational inequality and convex minimization problems in Banach spaces. Our results extend many known recent results in the literature.



2010 ◽  
Vol 2010 ◽  
pp. 1-13
Author(s):  
Jian-Wen Peng ◽  
Yan Wang

We introduce an Ishikawa iterative scheme by the viscosity approximate method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in Hilbert space. Then, we prove some strong convergence theorems which extend and generalize S. Takahashi and W. Takahashi's results (2007).



Sign in / Sign up

Export Citation Format

Share Document