scholarly journals Synthesis, Characterization, and Magnetic and Thermal Studies on Some Metal(II) Thiophenyl Schiff Base Complexes

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Aderoju Amoke Osowole

4-(Thiophen-3-yl)-aniline undergoes condensation with o-vanillin to form an ONS donor Schiff base, 2-methoxy-6-[(4-thiophene-3-yl-phenylimino)-methyl]-phenol, which forms complexes of the type [ML2]xH2O (where M = Mn, Co, Ni, Cu, Zn, Pd). These complexes are characterized by elemental analysis, 1H nmr, electronic, mass, and IR spectroscopies and conductance measurements. The electronic, IR and CHN data are supportive of a 4-coordinate tetrahedral geometry for Mn(II), Co(II), Ni(II), and Zn(II) complexes and square-planar geometry for Cu(II) and Pd(II) complexes, with the chromophores N2O2. The magnetic data reveals that the complexes are magnetically dilute and mononuclear with exception of the Cu(II) complex, which exhibits some anti-ferromagnetisms. The complexes are air-stable solids, and none is an electrolyte in nitro methane.

2008 ◽  
Vol 5 (1) ◽  
pp. 155-162 ◽  
Author(s):  
K. Siddappa ◽  
Tukaram Reddy ◽  
M. Mallikarjun ◽  
C. V. Reddy

A new complexes of the type ML2 and M′L [where M=Cu(II), Co(II), and Ni(II) and M′= Zn(II), Cd(II) and Hg(II)]. L = 3-[(2-hydroxy-quinolin-3-ylmethylene)-amino]-2-phenyl-3H-quinazolin-4-one, (HQMAPQ) Schiff base have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR,1H NMR, UV-Visible and ESR data. The studies indicate the HQMAPQ acts as doubly monodentate bridge for metal(II) ions and form mononuclear complexes. The complexes Ni(II), Co(II) and Cu(II) complexes are found to be octahedral, where as Zn(II), Cd(II) and Hg(II) complexes are four coordinated with tetrahedral geometry. The synthesized ligand and its metal(II) complexes were screened for their antimicrobial activity.


Author(s):  
Paresh S. More ◽  
Bipin H. Mehta

Transition metal complexes of the type ML1 [Where M= Co(II),Ni(II),Cu(II) and Zn(II), L= Schiff base of 5 nitro-salicylaldehyde and p-anisidine were characterized by using 1H NMR, TGA, Diffused reflectance and ESR spectroscopy. On the basis of above studies Co(II), Ni(II) shows tetrahedral structure, Cu(II) and Zn(II) shows square planar structure.


2016 ◽  
Vol 45 (47) ◽  
pp. 18967-18976 ◽  
Author(s):  
Archana Choudhary ◽  
Bidisa Das ◽  
Saumi Ray

Square planar Ni(ii)-Schiff base complexes when encapsulated in a supercage of zeolite Y have shown altered optical and magnetic properties and catalytic activities in comparison to their corresponding free states.


2020 ◽  
Vol 36 (05) ◽  
pp. 954-957
Author(s):  
Shivani Prakash ◽  
Anju Kumari Gupta ◽  
Sachin Prakash ◽  
D. Prakash

A series of new hetero binuclear complexes of copper(II) and lead(II) using Schiff base have been synthesized. The Schiff base has been derived from the condensation reaction between Salicylaldehyde and 1,2-Ethylenediamine. The hetero binuclear complexes have been characterized by using elemental analysis, molar conductance measurement, magnetic susceptibility studies, UV-Vis and IR spectra. The studies revealed square planar geometry for the complexes with coordination number four.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ibrahim A. M. Saraireh ◽  
Mohammednoor Altarawneh ◽  
Jibril Alhawarin ◽  
Mahmoud Salman ◽  
Abdel Aziz Abu-Yamin ◽  
...  

Schiff base diethyl 4,4-(pentane-2,4-diylidenebis(azanylylidene))benzoate (1) as a new ligand (L) was prepared by the reaction of acetylacetone with benzocaine in the ratio of 1 : 1. Two transition-metal complexes, [Ni(II)(LCl(HOEt))] (2) and [Zn(II)(LCl(HOEt))] (3), have been synthesized from metal salts with didentate Schiff base ligand (L) and characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR UV-Vis spectroscopy, and magnetic susceptibility. The biological activity of the complexes was studied. In addition, the M06-2x density function theory method and the 6-31G(d) basic set were applied to determine the optimized structures of 1–3 and to determine their IR and 1H NMR, 13C NMR spectra theoretically. The data are in good agreement with the experimental results. The geometries of complexes 2 and 3 were determined to be square-planar for 2 and tetrahedral for 3.


2018 ◽  
Vol 34 (6) ◽  
pp. 3064-3069 ◽  
Author(s):  
Lekshmi V. Kumar ◽  
G. Rathika Nath

Complexes of carboxymethyl-N-methyl-N-phenyl dithiocarbamate (DTC) with cobalt(II), nickel((II), copper(II) and zinc(II) complexes were synthesized in 1:2 molar ratio with general formula [M(DTC)2],{M=Co(II)/Ni(II)/Cu(II)/Zn(II)} and characterized by elemental analysis, molar conductance, infrared and electronic spectra. The ligand structure was confirmed by 1H and 13C nuclear magnetic resonance spectrum. The measured molar conductance values indicate the non-electrolytic nature of the metal complexes. The elemental analysis, infrared, electronic spectra and magnetic moment suggest that the coordination of DTC occurred through sulphur and oxygen atom as a bidentate. The cobalt(II) and zinc(II) complexes were found to coordinate in a tetrahedral geometry and complexes and nickel(II) and copper(II) complexes coordinate in a square planar geometry. Thermal analysis was carried out to ascertain the thermal stability of the metal complexes. By using powder XRD measurements, the lattice parameters, space group and grain size were determined. The scanning electron microscope images reveal the surface morphology of the metal complexes.


Author(s):  
Rohit B. Manawar ◽  
Mayank J. Mamtora ◽  
Manish K. Shah ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry \overline{1}). In the crystal of (I), discernible supramolecular layers in the ac plane are sustained by chlorobenzene-C—H...O(coordinated), chlorobenzene-C—H...π(fused-benzene ring) as well as π(fused-benzene, chlorobenzene)–π(chlorobenzene) interactions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by dichlorobenzene-C—H...π(fused-benzene ring) and π–π interactions between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supramolecular layers are also found in the crystal of (II), being stabilized by π–π interactions formed between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10\overline{1}] without directional interactions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H...H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl...H/H...Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl...Cl [2.2%] and Cu...Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The interaction energies largely arise from dispersion terms; the aforementioned Cu...Cl contact in (II) gives rise to the most stabilizing interaction in the crystal of (II).


2006 ◽  
Vol 61 (10) ◽  
pp. 1209-1216 ◽  
Author(s):  
Joy Chakraborty ◽  
Raj K. Bhubon Singh ◽  
Brajagopal Samanta ◽  
Chirantan Roy Choudhury ◽  
Subrata K. Dey ◽  
...  

Two novel quadridentate Schiff base complexes, [NiIILH](ClO4)2・H2O (1) and [CoIIIL]- (ClO4)2・H2O (2) [LH, a Schiff base ligand: Ph(OH)C(Me)=NCH2CH2N(CH2CH2NH2)2] have been synthesised and characterised by elemental analyses, spectroscopic and electrochemical studies. The structures of both have been unequivocally established from single crystal X-ray diffraction studies. 1 and 2 crystallise in the monoclinic space group P21/n having cell parameters a = 8.536(1), b = 13.832(4), c = 18.194(2) Å , β = 100.00(10)°, Z = 4 for 1, and a = 10.819(5), b = 14.301(2), c=14.224(1) Å , β =97.04(2)°, Z =4 for 2. The complexes expose a square planar geometry around the metal centers chelated with three different types of nitrogen donor centers of the ligand.


2011 ◽  
Vol 8 (4) ◽  
pp. 1662-1669 ◽  
Author(s):  
Pragathi Jogi ◽  
K. Mounika ◽  
M. Padmaja ◽  
Lakshmi M. ◽  
C. Gyanakumari

Complexes of Cu(II), VO(IV), Mn(II), Co(II), Ni(II) and Zn(II) with a Schiff base derived from 2-(aminomethyl)benzimidazole and thiophene-2-carbaxaldehyde (1-(1H-benzimidazol-2-yl)-N-[(E) thiophenylmethylidene] methanamine-BNTM) were successfully synthesized. The complexes have been characterized using chemical analysis, spectroscopic methods (IR, UV-Visible,1H- NMR,13C-NMR and ESR), Thermal studies, conductometric and magnetic data. According to these data, we proposed an octahedral geometry to all the metal complexes. Antibacterial activity of the ligand and its metal complexes were studied against two gram-negative bacteria;Escherichia coli, Pseudomonas aeruginosaand two gram-positive bacteria;Bacillus subtilis, Staphylococcus aureus. It has been found that all the complexes are antimicrobially active and show higher activity than ligand.


2008 ◽  
Vol 5 (1) ◽  
pp. 130-135 ◽  
Author(s):  
A. A. Osowole

VO(IV), Ni(II) and Cu(II) complexes of the asymmetric Schiff base [(HOC6H3(OCH3)C(C6H5):N(CH2CH2)N:C(CH3)CH:C(C6H5)OH)], and their heteroleptic analogues with triphenyl phosphine and 2,2’-bipyridine have been synthesized and characterized by elemental analyses, conductance, magnetic, infrared and electronic spectral measurements. The ligand is tetradentate coordinatingviathe imine N and enolic O atoms. The Ni(II) and Cu(II) complexes adopt a four coordinate square planar geometry, the VO(IV) complex is five coordinate square-pyramidal and the heteroleptic complexes are 6-coordinate, octahedral. The assignment of geometry is collaborated by magnetic moments and electronic spectra measurements. The compounds are non-electrolyte in nitromethane and are magnetically dilute.


Sign in / Sign up

Export Citation Format

Share Document