scholarly journals Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Anneke B. Oostra ◽  
Aggie W. M. Nieuwint ◽  
Hans Joenje ◽  
Johan P. de Winter

Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient.

Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Najim Ameziane ◽  
Daoud Sie ◽  
Stefan Dentro ◽  
Yavuz Ariyurek ◽  
Lianne Kerkhoven ◽  
...  

Fanconi anemia (FA) is a rare genetic instability syndrome characterized by developmental defects, bone marrow failure, and a high cancer risk. Fifteen genetic subtypes have been distinguished. The majority of patients (≈85%) belong to the subtypes A (≈60%), C (≈15%) or G (≈10%), while a minority (≈15%) is distributed over the remaining 12 subtypes. All subtypes seem to fit within the “classical” FA phenotype, except for D1 and N patients, who have more severe clinical symptoms. Since FA patients need special clinical management, the diagnosis should be firmly established, to exclude conditions with overlapping phenotypes. A valid FA diagnosis requires the detection of pathogenic mutations in a FA gene and/or a positive result from a chromosomal breakage test. Identification of the pathogenic mutations is also important for adequate genetic counselling and to facilitate prenatal or preimplantation genetic diagnosis. Here we describe and validate a comprehensive protocol for the molecular diagnosis of FA, based on massively parallel sequencing. We used this approach to identifyBRCA2,FANCD2,FANCIandFANCLmutations in novel unclassified FA patients.


Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Johan J. P. Gille ◽  
Karijn Floor ◽  
Lianne Kerkhoven ◽  
Najim Ameziane ◽  
Hans Joenje ◽  
...  

Fanconi anemia (FA) is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD) and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening ofFANCA, FANCB, FANCC, FANCE, FANCF,andFANCGand present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Dorsaf Touil ◽  
Rahma Bouhouch ◽  
Raoua Belkacem Chebil ◽  
Lamia Oualha ◽  
Nabiha Douki

Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by multiple congenital abnormalities, bone marrow failure, and higher susceptibility to malignancies, especially to head and neck carcinomas. Only few reports about the oral manifestations of FA are available. The main reported oral conditions associated with FA are microdontia and advanced periodontitis. The aim of this paper was to report a case of a 10-year-old patient with FA presenting severe spontaneous gingival bleeding, as well as to discuss the role of the dentist in the management and treatment of this condition.


2019 ◽  
Vol 66 (4) ◽  
pp. 218-220
Author(s):  
Saki Nagano ◽  
Masanori Tsukamoto ◽  
Takeshi Yokoyama

Fanconi anemia (FA) is a type of bone marrow failure syndrome based on an autosomal recessive inherited trait with increased predisposition for other cancers. It is extremely rare and is characterized by short stature, polydactyly, and pancytopenia. At present, the only effective treatment for FA is allogeneic hematopoietic stem cell transplantation (SCT). Chemotherapy is necessary prior to allogeneic SCT. Dental treatment is usually performed before chemotherapy to reduce potential infections. We experienced the anesthetic management of a 4-year-old boy diagnosed with FA, who underwent extensive dental extractions before chemotherapy for SCT. In the preoperative examination, the platelet count was decreased to less than 3.0 × 104 cells/μL because of chronic pancytopenia. The patient received 20 units of platelet transfusion over 3 days prior to anesthesia. Dental surgery and multiple dental extractions were successfully completed under general anesthesia with sevoflurane, fentanyl, and remifentanil, and chemotherapy started 3 days postoperatively.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1056-1056
Author(s):  
Fernando O. Pinto ◽  
Thierry Leblanc ◽  
Gwenaelle Le Roux ◽  
Helene Dastot ◽  
Moema Santos ◽  
...  

Abstract Early diagnosis of Fanconi Anemia (FA) in patients with bone marrow failure is critical for optimal clinical management. However, the remarkably high clinical variability and the potential emergence of revertant hematopoietic cells (somatic mosaicism) can obscure and delay the diagnosis of FA. Here we addressed FA diagnosis in a prospective series of adult and pediatric patients who presented with bone marrow failure without clear overall clinical picture of FA. Sixty-six patients were classified into three groups: (1) bone marrow failure likely to be congenital, based on dysmorphic features or a family history [n=18], (2) aplastic anemia likely to be idiopathic [n=32], (3) patients with intermediate clinical features not classified into the former groups [n=16]. Of note, FA patients with typical clinical features were not included in the present study. FA diagnosis was evaluated using chromosome breakage test and FANCD2 immunoblot in PHA-stimulated-PBL. In addition, skin primary fibroblasts were analysed in order to overcome potential hematopoietic FA reversion. For that purpose, and considering that chromosome breakage tests are barely efficient in fibroblasts, we used FANCD2 immunoblot and also developped a new flow cytometry test based on MMC-sensitivity in fibroblasts (to detect downstream FA/BRCA groups). Using these approaches, we detected FA in 4 previously undiagnosed patients: a 35-years old patient from the congenital-like group; a 10-years old patient presenting as an idiopathic aplastic anemia without any FA signs; and two patients from the intermediate group: a 10-years old patient with an isolated thrombocytopenia, and a 50-years old patient presenting with pancytopenia/MDS and complete hematopoietic reversion. Importantly, FA diagnosis was definitely excluded in all other patients. In conclusion, we could identify a few unexpected FA cases in a series of patients with bone marrow failure. Therefore, the comprehensive use of a large set of tests is useful for accurate FA diagnosis. Classical chromosomal breakage tests in PBL appeared to be sufficient to exclude FA in idiopathic aplastic anemia, whereas fibroblast analysis can be necessary to definitely diagnose or exclude FA in other patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1334-1334
Author(s):  
Ashley N. Kamimae-Lanning ◽  
Tae H. Ha ◽  
Amy M. Skinner ◽  
Thomas B. Russell ◽  
Peter Kurre

Abstract Abstract 1334 Bone marrow failure is the most common cause of morbidity and mortality from Fanconi anemia (FA), a recessively inherited disorder resulting from mutations in one of 15 known genes that cooperate in a DNA repair pathway. The underlying etiology is thought to reflect an accelerated postnatal exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool. However, laboratory evidence of compromised hematopoietic function in patients generally precedes symptoms of cytopenia, and several other mesodermal-derived organ systems show defects with prenatal onset, including the skeletal system, heart, kidneys, and others. Further, recent experimental evidence in human embryonic stem cell lines suggested that RNA interference-mediated knock-down of FANCD2 and FANCA impairs development of hematopoietic cells. The fetal liver provides a unique microenvironment for development of definitive hematopoietic function and serves as a site of massive HSPC expansion. However, neither the potential developmental onset of bone marrow failure or non-stem cell-autonomous contributions in FA have been systematically clarified to-date. We relied on a murine model of FA with a transgenic disruption of Fancc to test the hypothesis that hematopoietic failure for this disease may have developmental origins. Although spontaneous bone marrow failure does not occur in this FA mouse model, animals recapitulate impaired repopulating ability, characteristic cell cycle abnormalities, and impaired cytokine responses. To determine whether number and function of fetal liver (FL) HSPCs affect postnatal hematopoietic function in FA mice, we plated unfractionated cells from 14.5 days post coitum (dpc) FL in methylcellulose and undertook a chronologic assessment of postnatal bone marrow progenitor clonogenicity. These studies showed that, compared with wild-type (wt) littermates, Fancc−/− animals demonstrate a progressive deficiency in progenitor number and function that increases with age, suggesting that HSPC attrition is developmentally programmed. Fancc−/−fetal mice revealed a 10% reduction in body mass and 33% lower total liver cell count compared with wt littermates. Cytogenetic analysis shows Fancc−/−FL cells exhibit mitomycin-c hypersensitivity characteristic of FA, with increased chromosomal breakage and radial formation. Livers of 14.5±.5 dpc Fancc−/−fetuses contain approximately 43% fewer c-Kit+Sca-1+ progenitor-enriched cells, compared with wt littermates. Cell cycle status of fetal livers revealed a characteristically increased proportion of Fancc−/− fetal liver progenitor-enriched (c-Kit+ Sca-1+) cells in G2-M phase of cell cycle, compared to wt littermate liver. When plated in methylcellulose assays, Fancc−/−FL showed an approximately 20% reduction in progenitor frequency, compared to wt littermates, and plating in mitomycin-c resulted in outgrowth of fewer colonies. Further, studies to determine the relative in vivo repopulating cell frequency were performed using CD45-isotype mismatched, submyeloablatively irradiated (750 cGy) animals. Recipients receiving unfractionated 14.5±.5 dpc Fancc−/−liver cells showed a slight, but consistent reduction in peripheral blood chimerism at serial timepoints (1–5 months) and bone marrow chimerism at sacrifice. We also found a 21% reduction in total Fancc−/−clonogenic bone marrow progenitor frequency by methylcellulose assay in primary recipients, compared to wt-transplanted controls. In sum, these studies suggest a developmental origin of hematopoietic failure in FA, whereby the prenatal onset potentially contributes to disease progression. Results contrast with a conventional model of postnatal stem cell attrition and may impact the development of preemptive therapies for FA patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (17) ◽  
pp. 3453-3462 ◽  
Author(s):  
Asmin Tulpule ◽  
M. William Lensch ◽  
Justine D. Miller ◽  
Karyn Austin ◽  
Alan D'Andrea ◽  
...  

Abstract Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.


Anemia ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Petra van der Lelij ◽  
Anneke B. Oostra ◽  
Martin A. Rooimans ◽  
Hans Joenje ◽  
Johan P. de Winter

Fanconi anemia (FA) is a recessively inherited disease characterized by multiple symptoms including growth retardation, skeletal abnormalities, and bone marrow failure. The FA diagnosis is complicated due to the fact that the clinical manifestations are both diverse and variable. A chromosomal breakage test using a DNA cross-linking agent, in which cells from an FA patient typically exhibit an extraordinarily sensitive response, has been considered the gold standard for the ultimate diagnosis of FA. In the majority of FA patients the test results are unambiguous, although in some cases the presence of hematopoietic mosaicism may complicate interpretation of the data. However, some diagnostic overlap with other syndromes has previously been noted in cases with Nijmegen breakage syndrome. Here we present results showing that misdiagnosis may also occur with patients suffering from two of the three currently known cohesinopathies, that is, Roberts syndrome (RBS) and Warsaw breakage syndrome (WABS). This complication may be avoided by scoring metaphase chromosomes—in addition to chromosomal breakage—for spontaneously occurring premature centromere division, which is characteristic for RBS and WABS, but not for FA.


2018 ◽  
Vol 5 (5) ◽  
pp. 2002
Author(s):  
Pooja Pradeep ◽  
Vindhiya K. ◽  
Shiji R.

Fanconi anemia is an inherited pancytopenia, primarily inherited as autosomal recessive form. It occurs in all racial and ethnic groups. Majority of patients have both physical and haematological abnormalities, about one-third of patients will have normal physical features but abnormal haematological findings and unknown percentage have physical anomalies and normal haematological findings. The diagnosis is based on characteristic physical anomalies and abnormal haematological findings, which is confirmed with a lymphocytic chromosomal breakage study using Diepoxy butane (DEB). The report here is about a two and half years old female child who presented with physical features in the form of short stature, microcephaly, left hypoplastic thumb and congenital heart disease without haematological abnormalities. Chromosomal study was suggestive of Fanconi’s anemia.


Sign in / Sign up

Export Citation Format

Share Document