scholarly journals Underappreciated Consequences of Phenotypic Plasticity for Ecological Speciation

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Benjamin M. Fitzpatrick

Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However, some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects of plasticity on local adaptation (the first component of ecological speciation). Adaptive phenotypic plasticity can be a buffer against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation (the second component of ecological speciation). Plasticity can cause assortative mating, but its influence on gene flow ultimately depends on maintenance of environmental similarity between parents and offspring. Examples of plasticity influencing mating and habitat choice suggest that this, too, might be an underappreciated factor in speciation. Plasticity is an important consideration for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and evolution.


2017 ◽  
Author(s):  
Chad D. Brock ◽  
Molly E. Cummings ◽  
Daniel I. Bolnick

AbstractAdaptive phenotypic divergence is typically studied across relatively broad spatial scales (continents, archipelagos, river basins) because at these scales we expect environmental differences to be strong, and the homogenizing effect of gene flow to be weak. However, phenotypic plasticity and phenotype-dependent habitat choice are additional mechanisms that could also drive adaptation across spatially variable environments. We present evidence for apparently adaptive phenotypic variation across surprisingly small spatial scales (<2 vertical meters) in the threespine stickleback. We find that male breeding coloration varies as a function of the lakes’ optical-depth gradient, and these small-scale clines (‘microclines’) appear to be an adaptive response to ambient light gradients, as male color changes predictably in the opposite direction (‘countergradient’) to ambient light spectral shifts. Using visual models and field enclosure experiments, we show that these microclines result from phenotypic plasticity that maintains male conspicuousness. Our results show that adaptive phenotypic clines can exist across small spatial scales, because phenotypic plasticity rapidly generates repeatable trait-environment correlations despite the overwhelming opportunity for gene flow. Furthermore, these results provide strong evidence that phenotypic plasticity in nuptial coloration is an important mechanism for adjusting the conspicuousness of a visual signal to conspecifics.



2021 ◽  
Author(s):  
Alexander M Lalejini ◽  
Austin J Ferguson ◽  
Nkrumah A Grant ◽  
Charles Ofria

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles via deleterious hitchhiking, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.



2013 ◽  
Vol 59 (4) ◽  
pp. 526-536 ◽  
Author(s):  
Matthew R.J. Morris ◽  
Sean M. Rogers

Abstract Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation) and two of which do not (standing epigenetic variation, plastic compensation). Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.



2021 ◽  
Vol 9 ◽  
Author(s):  
Alexander Lalejini ◽  
Austin J. Ferguson ◽  
Nkrumah A. Grant ◽  
Charles Ofria

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.



Author(s):  
Andrew P. Hendry

This chapter details the nature of plasticity and how it can be studied, focusing in particular on the “reaction norm” approach. The subsequent key questions first evaluate whether or not plasticity is typically adaptive, with the main alternative being maladaptive physiological responses to stress. The next question informs the costs and limits to plasticity, without which any environment-phenotype mismatch could be easily bridged. The chapter considers when adaptive plasticity should be strongest, such as when environments are variable in space or time, when gene flow is high, and when reliable cues exist. Also considered are alternative hypotheses for how genetic change and plasticity interact: that is, plasticity might enhance or constrain genetic evolution and ecological speciation.



2018 ◽  
Author(s):  
Cristina Acasuso-Rivero ◽  
Courtney J. Murren ◽  
Carl D. Schlichting ◽  
Ulrich K. Steiner

ABSTRACTOrganisms are faced with variable environments and one of the most common solutions to cope with such variability is phenotypic plasticity, a modification of the phenotype to the environment. These modifications influence ecological and evolutionary processes and are assumed to be adaptive. The assumption of adaptive plasticity allows to derive the prediction that the closer to fitness a trait is, the less plastic it would be. To test this hypothesis, we conducted a meta-analysis of 213 studies and measured the plasticity of each reported trait as coefficient of variation (CV). Traits were categorised according to their relationship to fitness into life-history traits (LHt) including reproduction and survival related-traits, and non-life-history traits (N-LHt) including traits related to development, metabolism and physiology, morphology and behaviour. Our results showed, unexpectedly, that although traits differed in their amounts of plasticity, trait plasticity did not correlate with its proximity to fitness. These findings were independent of taxonomic groups or environmental types assessed and raise questions about the ubiquity of adaptive plasticity. We caution about generalising the assumption that all plasticity is adaptive with respect to evolutionary and ecological population processes. More studies are needed that test the adaptive nature of plasticity, and additional theoretical explorations on adaptive and non-adaptive plasticity are encouraged.



2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jeffrey L. Feder ◽  
Scott P. Egan ◽  
Andrew A. Forbes

Habitat choice is an important component of most models of ecologically based speciation, especially when population divergence occurs in the face of gene flow. We examine how organisms choose habitats and ask whether avoidance behavior plays an important role in habitat choice, focusing on host-specific phytophagous insects as model systems. We contend that when a component of habitat choice involves avoidance, there can be repercussions that can have consequences for enhancing the potential for specialization and postzygotic reproductive isolation and, hence, for ecological speciation. We discuss theoretical and empirical reasons for why avoidance behavior has not been fully recognized as a key element in habitat choice and ecological speciation. We present current evidence for habitat avoidance, emphasizing phytophagous insects, and new results for parasitoid wasps consistent with the avoidance hypothesis. We conclude by discussing avenues for further study, including other potential roles for avoidance behavior in speciation related to sexual selection and reinforcement.



2019 ◽  
Vol 286 (1904) ◽  
pp. 20190653 ◽  
Author(s):  
Cristina Acasuso-Rivero ◽  
Courtney J. Murren ◽  
Carl D. Schlichting ◽  
Ulrich K. Steiner

Organisms are faced with variable environments and one of the most common solutions to cope with such variability is phenotypic plasticity, a modification of the phenotype to the environment. These modifications are commonly modelled in evolutionary theories as adaptive, influencing ecological and evolutionary processes. If plasticity is adaptive, we would predict that the closer to fitness a trait is, the less plastic it would be. To test this hypothesis, we conducted a meta-analysis of 213 studies and measured the plasticity of each reported trait as a coefficient of variation. Traits were categorized as closer to fitness—life-history traits including reproduction and survival related traits, and farther from fitness—non-life-history traits including traits related to development, metabolism and physiology, morphology and behaviour. Our results showed, unexpectedly, that although traits differed in their amounts of plasticity, trait plasticity was not related to its proximity to fitness. These findings were independent of taxonomic groups or environmental types assessed. We caution against general expectations that plasticity is adaptive, as assumed by many models of its evolution. More studies are needed that test the adaptive nature of plasticity, and additional theoretical explorations on adaptive and non-adaptive plasticity are encouraged.



Sign in / Sign up

Export Citation Format

Share Document