scholarly journals Convergence Theorems for Equilibrium Problems and Fixed-Point Problems of an Infinite Family ofki-Strictly Pseudocontractive Mapping in Hilbert Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-23
Author(s):  
Haitao Che ◽  
Meixia Li ◽  
Xintian Pan

We first extend the definition of Wnfrom an infinite family of nonexpansive mappings to an infinite family of strictly pseudocontractive mappings, and then propose an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of an infinite family ofki-strictly pseudocontractive mappings in Hilbert spaces. The results obtained in this paper extend and improve the recent ones announced by many others. Furthermore, a numerical example is presented to illustrate the effectiveness of the proposed scheme.

2010 ◽  
Vol 2010 ◽  
pp. 1-27 ◽  
Author(s):  
Jian-Wen Peng ◽  
Soon-Yi Wu ◽  
Jen-Chih Yao

We introduce a new iterative scheme based on extragradient method and viscosity approximation method for finding a common element of the solutions set of a system of equilibrium problems, fixed point sets of an infinite family of nonexpansive mappings, and the solution set of a variational inequality for a relaxed cocoercive mapping in a Hilbert space. We prove strong convergence theorem. The results in this paper unify and generalize some well-known results in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Peichao Duan ◽  
Aihong Wang

We propose an implicit iterative scheme and an explicit iterative scheme for finding a common element of the set of fixed point of infinitely many strict pseudocontractive mappings and the set of solutions of an equilibrium problem by the general iterative methods. In the setting of real Hilbert spaces, strong convergence theorems are proved. Our results improve and extend the corresponding results reported by many others.


2013 ◽  
Vol 2013 ◽  
pp. 1-24 ◽  
Author(s):  
Haitao Che ◽  
Xintian Pan

In this paper, modifying the set of variational inequality and extending the nonexpansive mapping of hybrid steepest descent method to nonexpansive semigroups, we introduce a new iterative scheme by using the viscosity hybrid steepest descent method for finding a common element of the set of solutions of a system of equilibrium problems, the set of fixed points of an infinite family of strictly pseudocontractive mappings, the set of solutions of fixed points for nonexpansive semigroups, and the sets of solutions of variational inequality problems with relaxed cocoercive mapping in a real Hilbert space. We prove that the sequence converges strongly to a common element of the above sets under some mild conditions. The results shown in this paper improve and extend the recent ones announced by many others.


2010 ◽  
Vol 2010 ◽  
pp. 1-23
Author(s):  
Pattanapong Tianchai ◽  
Rabian Wangkeeree

We introduce an iterative scheme by the viscosity approximation to find the set of solutions of the generalized system of relaxed cocoercive quasivariational inclusions and the set of common fixed points of an infinite family of strictly pseudocontractive mappings problems in Hilbert spaces. We suggest and analyze an iterative scheme under some appropriate conditions imposed on the parameters; we prove that another strong convergence theorem for the above two sets is obtained. The results presented in this paper improve and extend the main results of Li and Wu (2010) and many others.


2012 ◽  
Vol 2012 ◽  
pp. 1-20
Author(s):  
Aihong Wang

We introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of the solutions of the equilibrium problem and the set of fixed points of infinitely strict pseudocontractive mappings. Strong convergence theorems are established in Hilbert spaces. Our results improve and extend the corresponding results announced by many others recently.


2011 ◽  
Vol 2011 ◽  
pp. 1-32
Author(s):  
Pattanapong Tianchai

This paper is concerned with a common element of the set of common fixed points for two infinite families of strictly pseudocontractive mappings and the set of solutions of a system of cocoercive quasivariational inclusions problems in Hilbert spaces. The strong convergence theorem for the above two sets is obtained by a novel general iterative scheme based on the viscosity approximation method, and applicability of the results has shown difference with the results of many others existing in the current literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Yaqin Wang ◽  
Hongkun Xu ◽  
Xiaoli Fang

The purpose of this paper is to consider a new scheme by the hybrid extragradient-like method for finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of solutions of a variational inequality, and the set of fixed points of an infinitely family of strictly pseudocontractive mappings in Hilbert spaces. Then, we obtain a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm. Our results extend and improve the results of Issara Inchan (2010) and many others.


2011 ◽  
Vol 2011 ◽  
pp. 1-16
Author(s):  
Pattanapong Tianchai

This paper is concerned with a common element of the set of common fixed points for an infinite family of strictly pseudocontractive mappings and the set of solutions of a system of cocoercive quasivariational inclusions problems in Hilbert spaces. The strong convergence theorem for the above two sets is obtained by a general iterative scheme based on the shrinking projection method, and the applicability of the results is shown to extend and improve some well-known results existing in the current literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Tanom Chamnarnpan ◽  
Poom Kumam

We introduce a new iterative algorithm for solving a common solution of the set of solutions of fixed point for an infinite family of nonexpansive mappings, the set of solution of a system of mixed equilibrium problems, and the set of solutions of the variational inclusion for aβ-inverse-strongly monotone mapping in a real Hilbert space. We prove that the sequence converges strongly to a common element of the above three sets under some mild conditions. Furthermore, we give a numerical example which supports our main theorem in the last part.


Sign in / Sign up

Export Citation Format

Share Document