scholarly journals Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Giovanni Cirillo ◽  
Daniele De Luca ◽  
Michele Papa

Astrocytic Ca2+dynamics have been extensively studied inex vivomodels; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca2+signaling in living central nervous system. Ca2+waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101) and imaged astrocytic Ca2+levels with Oregon-Green BAPTA-1 (OGB). Then, we studied astrocytic Ca2+levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca2+levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion,in vivomorphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Uk Jegal ◽  
Jun Ho Lee ◽  
Jungbin Lee ◽  
Hyerin Jeong ◽  
Myoung Joon Kim ◽  
...  

Abstract Gatifloxacin is a 4th generation fluoroquinolone antibiotic used in the clinic to treat ocular infection. One limitation of gatifloxacin is its relatively poor corneal penetration, and the increase of its trans-corneal delivery would be beneficial to reduce the amount or frequency of daily dose. In this study, ultrasound treatment was applied to enhance the trans-corneal delivery of gatifloxacin without damage. Experiments were conducted on mouse eyes in ex vivo and in vivo conditions. Ultrasound waves with 1 MHz in frequency, 1.3 W/cm2 in intensity were applied onto the mouse cornea for 5 minutes, and then gatifloxacin ophthalmic solution was instilled and left there for 10 minutes. 3D gatifloxacin distribution in the cornea was measured by two-photon microscopy (TPM) imaging based on its intrinsic fluorescence. Longitudinal TPM imaging of ultrasound treated mouse corneas showed the increase of initial gatifloxacin intensities on the corneal surface compared to untreated mouse corneas by 67%, and then the increased gatifloxacin delivery into the cornea from the surface at later time. The delivered gatifloxacin in the corneal epithelium stayed longer in the ultrasound treated corneas than in the untreated corneas. The enhanced trans-corneal delivery and extended stay of gatifloxacin in the mouse cornea by ultrasound treatment could be beneficial for therapeutic effects. This study demonstrated the detail process of enhanced trans-corneal gatifloxacin delivery by ultrasound treatment.


2008 ◽  
Vol 169 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Dimitrios Davalos ◽  
Jae K. Lee ◽  
W. Bryan Smith ◽  
Brendan Brinkman ◽  
Mark H. Ellisman ◽  
...  

2019 ◽  
Author(s):  
Nirmal Das ◽  
Ewa Baczynska ◽  
Monika Bijata ◽  
Blazej Ruszczycki ◽  
Andre Zeug ◽  
...  

AbstractThree dimensional segmentation and analysis of dendritic spines involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. We developed a software named 3dSpAn to address these two issues by implementing our previously published 3D multiscale opening algorithm in shared intensity space and using effective morphological features for individual dendritic spine plasticity analysis. 3dSpAn consists of four modules: Preprocessing and ROI selection, Intensity thresholding and seed selection, Multiscale segmentation and Quantitative morphological feature extraction. We show the results of segmentation and morphological analysis for different observation methods, including in vitro and ex vivo imaging with confocal microscopy, and in vivo samples, using high-resolution two-photon microscopy. The software is freely available, the source code, windows installer, the software manual and video tutorial can be obtained from: https://sites.google.com/view/3dSpAn/.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2012 ◽  
Vol 2012 (12) ◽  
pp. pdb.prot072264-pdb.prot072264 ◽  
Author(s):  
H. Steffens ◽  
F. Nadrigny ◽  
F. Kirchhoff

2007 ◽  
Author(s):  
Marica B. Ericson ◽  
John Paoli ◽  
Carl Ljungblad ◽  
Adaocha Odu ◽  
Maria Smedh ◽  
...  

2021 ◽  
Author(s):  
Simeng Gu ◽  
Wei Wang ◽  
Kuan Zhang ◽  
Rou Feng ◽  
Naling Li ◽  
...  

Abstract Different effects of astrocyte during sleep and awake have been extensively studied, especially for metabolic clearance by the glymphatic system, which works during sleep and stops working during waking states. However, how astrocytes contribute to modulation of sensory transmission during sleep and awake animals remain largely unknown. Recent advances in genetically encoded Ca2+ indicators have provided a wealth of information on astrocytic Ca2+, especially in their fine perisynaptic processes, where astrocytic Ca2+ most likely affects the synaptic function. Here we use two-photon microscopy to image astrocytic Ca2+ signaling in freely moving mice trained to run on a wheel in combination with in vivo whole-cell recordings to evaluate the role of astrocytic Ca2+ signaling in different behavior states. We found that there are two kinds of astrocytic Ca2+ signaling: a small long-lasting Ca2+ increase during sleep state and a sharp widespread but short-long-lasting Ca2+ spike when the animal was awake (fluorescence increases were 23.2 ± 14.4% for whisker stimulation at sleep state, compared with 73.3 ± 11.7% for at awake state, paired t-test, p < 0.01). The small Ca2+ transients decreased extracellular K+, hyperpolarized the neurons, and suppressed sensory transmission; while the large Ca2+ wave enhanced sensory input, contributing to reliable sensory transmission in aroused states. Locus coeruleus activation works as a switch between these two kinds of astrocytic Ca2+ elevation. Thus, we show that cortical astrocytes play an important role in processing of sensory input. These two types of events appear to have different pharmacological sources and may play a different role in facilitating the efficacy of sensory transmission.


2021 ◽  
Author(s):  
Huwei Ni ◽  
Yalun Wang ◽  
Tao Tang ◽  
Wenbin Yu ◽  
Dongyu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document