scholarly journals Simulation of CO-H2-Air Turbulent Nonpremixed Flame Using the Eddy Dissipation Concept Model with Lookup Table Approach

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami

We present a new combustion simulation technique based on a lookup table approach. In the proposed technique, a flow solver extracts the reaction rates from the look-up table using the mixture fraction, progress variable, and reaction time. Look-up table building and combustion simulation are carried out simultaneously. The reaction rates of the chemical species are recorded in the look-up table according to the mixture fraction, progress variable, and time scale of the reaction. Once the reaction rates are recorded, a direct integration to solve the chemical equations becomes unnecessary; thus, the time for computing the reaction rates is shortened. The proposed technique is applied to an eddy dissipation concept (EDC) model and it is validated through a simulation of a CO-H2-air nonpremixed flame. The results obtained by using the proposed technique are compared with experimental and computational data obtained by using the EDC model with direct integration. Good agreement between our method and the EDC model and the experimental data was found. Moreover, the computation time for the proposed technique is approximately 99.2% lower than that of the EDC model with direct integration.

Author(s):  
Xu Zhang ◽  
Ran Yi ◽  
C. P. Chen

Abstract In this study, a model flame of quasi-1D counterflow spray flame has been developed. The two-dimensional multiphase convection-diffusion-reaction (CDR) equations have been simplified to one dimension using similarity reduction under the Eulerian framework. This model flame is able to directly account for non-adiabatic heat loss as well as multiple combustion regimes present in realistic spray combustion processes. A spray flamelet library was generated based on the model flame. To retrieve data from the spray flamelet library, the enthalpy was used as an additional controlling variable to represent the interphase heat transfer, while the mixing and chemical reaction processes were mapped to the mixture fraction and the progress variable. The spray-flamelet/progress-variable (SFPV) approach was validated against the results from the direct integration of finite-rate chemistry as a benchmark. The SFPV approach gave a better performance in terms of temperature predictions, while the conventional gas-phase flamelet/progress-variable (FPV) approach over-predicted by nearly 20%. In terms of species mass fractions, there was no significant difference between the two, both showing good agreements with the direct integration of chemistry (DIC) model.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Chen Huang ◽  
Andrei N. Lipatnikov

Over the past years, the use of a presumed probability density function (PDF) for combustion progress variable or/and mixture fraction has been becoming more and more popular approach to average reaction rates in premixed and partially premixed turbulent flames. Commonly invoked for this purpose is a beta-function PDF or a combination of Dirac delta functions, with the parameters of the two PDFs being determined based on the values of their first and second moments computed by integrating proper balance equations. Because the choice of any of the above PDFs appears to be totally arbitrary as far as underlying physics of turbulent combustion is concerned, the use of such PDFs implies weak sensitivity of the key averaged quantities to the PDF shape. The present work is aimed at testing this implicit assumption by comparing mean heat release rates, burning velocities, and so forth, averaged by invoking the aforementioned PDFs, with all other things being equal. Results calculated in the premixed case show substantial sensitivity of the mean heat release rate to the shape of presumed combustion-progress-variable PDF, thus, putting the approach into question. To the contrary, the use of a presumed mixture-fraction PDF appears to be a sufficiently reasonable simplification for modeling the influence of fluctuations in the mixture fraction on the mean burning velocity provided that the mixture composition varies within flammability limits.


1981 ◽  
Vol 110 ◽  
pp. 411-432 ◽  
Author(s):  
N. Peters ◽  
W. Hocks ◽  
G. Mohiuddin

Closed-form expressions for the turbulent mean reaction rate and its covariance with the temperature are derived for premixed and non-premixed combustion. The limit of large activation energies is exploited for a chemical reaction rate that, by virtue of coupling functions, depends on the mixture fraction and a non-equilibrium progress variable only. The probability density function (p.d.f.) formulation with an assumed shape of the p.d.f. is used; a beta-function distribution is assumed for the progress variable. The mean reaction rate is expressed in terms of the mean and the variance of the temperature and, for non-premixed combustion, of the mixture fraction. The reaction kinetics are represented by the non-dimensional activation energy and the laminar flame velocity. For non-premixed systems the possibility of local extinction by flame stretch is considered.


Author(s):  
Rakesh Yadav ◽  
Shaoping Li ◽  
Ellen Meeks

In this work, a scale separation method has been proposed and implemented in the framework of Flamelet Generated Manifold (FGM) model. In this approach, first a list of slow evolving species like NO, N2O etc., are identified. Then, a separate transport equation for each of these species (called FGM scalars) is solved in addition to the mixture fraction and progress variable equations. The forward and reverse reaction rates of these slow forming species are computed in two-dimensional FGM flamelets and pre-tabulated as a function of progress variable, mixture fraction and their respective variances. At run time, the pre-tabulated probability density function (PDF) averaged production rates of these FGM scalars are used, while their tabulated reverse rates are modified with a linear scaling based on the ratio of tabulated values of the FGM scalar and the prevailing values of the FGM scalars from three dimensional CFD solution. This mechanism allows the reverse rates to provide continuous feedback and respond to the slow evolution of scalar. Other than the list of selected scalars, all other species and temperature are still computed as a function of the main progress variable and mixture fraction. Since, a small set of scalars can be used to track key species, this methodology remains computationally efficient. The current approach has been implemented into commercial CFD solver, ANSYS Fluent, and has been validated for two lab scale turbulent flames, the first one is Sandia Flame D, while the second one is a lifted turbulent methane flame in vitiated co-flow. In the current work, two additional FGM scalar transport equations are solved for CO and NO and comparisons have been made against the tabulated values as well as the experimental data. It has been seen that the scale separation methodology of these scalars leads ∼10–15% improvements in the CO mass fraction, while it reduces the peak NO formation up to 4 times leading to better agreement with experimental data compared to tabulated values. The quality of predictions from the current method is also evaluated against finite rate chemistry-based model as well as reduced order NO model. It is found that the current model has consistent results, and is an improvement over current reduced order modeling approach.


Kerntechnik ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. 192-202
Author(s):  
D. K. Chandraker ◽  
P. K. Vijayan ◽  
D. Saha ◽  
R. K. Sinha

2021 ◽  
Vol 10 (2) ◽  
pp. 79
Author(s):  
Ching-Yun Mu ◽  
Tien-Yin Chou ◽  
Thanh Van Hoang ◽  
Pin Kung ◽  
Yao-Min Fang ◽  
...  

Spatial information technology has been widely used for vehicles in general and for fleet management. Many studies have focused on improving vehicle positioning accuracy, although few studies have focused on efficiency improvements for managing large truck fleets in the context of the current complex network of roads. Therefore, this paper proposes a multilayer-based map matching algorithm with different spatial data structures to deal rapidly with large amounts of coordinate data. Using the dimension reduction technique, the geodesic coordinates can be transformed into plane coordinates. This study provides multiple layer grouping combinations to deal with complex road networks. We integrated these techniques and employed a puncture method to process the geometric computation with spatial data-mining approaches. We constructed a spatial division index and combined this with the puncture method, which improves the efficiency of the system and can enhance data retrieval efficiency for large truck fleet dispatching. This paper also used a multilayer-based map matching algorithm with raster data structures. Comparing the results revealed that the look-up table method offers the best outcome. The proposed multilayer-based map matching algorithm using the look-up table method is suited to obtaining competitive performance in identifying efficiency improvements for large truck fleet dispatching.


2021 ◽  
Vol 2 (1) ◽  
pp. 168-186
Author(s):  
Bahareh Vafakish ◽  
Lee D. Wilson

The nanoreactor concept and its application as a modality to carry out chemical reactions in confined and compartmentalized structures continues to receive increasing attention. Micelle-based nanoreactors derived from various classes of surfactant demonstrate outstanding potential for chemical synthesis. Polysaccharide (glycan-based) surfactants are an emerging class of biodegradable, non-toxic, and sustainable alternatives over conventional surfactant systems. The unique structure of glycan-based surfactants and their micellar structures provide a nanoenvironment that differs from that of the bulk solution, and supported by chemical reactions with uniquely different reaction rates and mechanisms. In this review, the aggregation of glycan-based surfactants to afford micelles and their utility for the synthesis of selected classes of reactions by the nanoreactor technique is discussed. Glycan-based surfactants are ecofriendly and promising surfactants over conventional synthetic analogues. This contribution aims to highlight recent developments in the field of glycan-based surfactants that are relevant to nanoreactors, along with future opportunities for research. In turn, coverage of research for glycan-based surfactants in nanoreactor assemblies with tailored volume and functionality is anticipated to motivate advanced research for the synthesis of diverse chemical species.


Author(s):  
Scott Martin ◽  
Aleksandar Jemcov ◽  
Björn de Ruijter

Here the premixed Conditional Moment Closure (CMC) method is used to model the recent PIV and Raman turbulent, enclosed reacting methane jet data from DLR Stuttgart [1]. The experimental data has a rectangular test section at atmospheric pressure and temperature with a single inlet jet. A jet velocity of 90 m/s is used with an adiabatic flame temperature of 2,064 K. Contours of major species, temperature and velocities along with velocity rms values are provided. The conditional moment closure model has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes [2]. The simplified CMC model used here falls into the class of table lookup turbulent combustion models where the chemical kinetics are solved offline over a range of conditions and stored in a table that is accessed by the CFD code. Most table lookup models are based on the laminar 1-D flamelet equations, which assume the small scale turbulence does not affect the reaction rates, only the large scale turbulence has an effect on the reaction rates. The CMC model is derived from first principles to account for the effects of small scale turbulence on the reaction rates, as well as the effects of the large scale mixing, making it more versatile than other models. This is accomplished by conditioning the scalars with the reaction progress variable. By conditioning the scalars and accounting for the small scale mixing, the effects of turbulent fluctuations of the temperature on the reaction rates are more accurately modeled. The scalar dissipation is used to account for the effects of the small scale mixing on the reaction rates. The original premixed CMC model used a constant value of scalar dissipation, here the scalar dissipation is conditioned by the reaction progress variable. The steady RANS 3-D version of the open source CFD code OpenFOAM is used. Velocity, temperature and species are compared to the experimental data. Once validated, this CFD turbulent combustion model will have great utility for designing lean premixed gas turbine combustors.


Sign in / Sign up

Export Citation Format

Share Document