scholarly journals Energy-Efficient Multi-Job Scheduling Model for Cloud Computing and Its Genetic Algorithm

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaoli Wang ◽  
Yuping Wang ◽  
Hai Zhu

For the problem that the energy efficiency of the cloud computing data center is low, from the point of view of the energy efficiency of the servers, we propose a new energy-efficient multi-job scheduling model based on Google’s massive data processing framework. To solve this model, we design a practical encoding and decoding method for the individuals and construct an overall energy efficiency function of the servers as the fitness value of each individual. Meanwhile, in order to accelerate the convergent speed of our algorithm and enhance its searching ability, a local search operator is introduced. Finally, the experiments show that the proposed algorithm is effective and efficient.

2021 ◽  
pp. 85-94
Author(s):  
Mohamed Elhoseny ◽  
◽  
◽  
X. Yuan

Energy efficiency is a significant challenge in mobile ad hoc networks (MANETs) design where the nodes move randomly with limited energy, leading to acceptable topology modifications. Clustering is a widely applied technique to accomplish energy efficiency in MANET. Therefore, this paper designs a new energy-efficient clustering protocol using an enhanced rain optimization algorithm (EECP-EROA) for MANET. The EROA technique is derived by integrating the Levy flight concept to the ROA to enhance global exploration abilities. In addition, the EECP-EROA technique intends to proficiently select CHs and the nearby nodes linked to the CH to generate clusters. Moreover, the EECP-EROA technique has derived an objective function with different input parameters. To showcase the superior performance of the EECP-EROA technique, a brief set of simulations takes place, and the results are inspected under varying aspects. The experimental values pointed out the betterment of the EECP-EROA technique over the other methods.


2011 ◽  
Vol 21 (02) ◽  
pp. 133-154 ◽  
Author(s):  
ANNE-CECILE ORGERIE ◽  
LAURENT LEFEVRE

At the age of petascale machines, cloud computing and peer-to-peer systems, large-scale distributed systems need an ever-increasing amount of energy. These systems urgently require effective and scalable solutions to manage and limit their electrical consumption. As of now, most efforts are focused on energy-efficient hardware designs. Thus, the challenge is to coordinate all these low-level improvements at the middleware level to improve the energy efficiency of the overall systems. Resource-management solutions can indeed benefit from a broader view to pool the resources and to share them according to the needs of each user. In this paper, we propose ERIDIS, an Energy-efficient Reservation Infrastructure for large-scale DIstributed Systems. It provides a unified and generic framework to manage resources from Grids, Clouds and dedicated networks in an energy-efficient way.


Usually cloud computing is based under effective data computing but green cloud computing focus on energy efficiency of device and computing mainly based on computing architecture. Here cloud computing is also known as green computing due its better effective energy. The purpose of green computing is to decrease the usage of harmful resources, maximizing energy efficiency throughout the living span of the good and also to promote the recyclability or bio degradability of useless goods plus misuse materials of the factory. In order to simulate the hardware by utilizing software, green computing plays a major role for various technologies like virtualization, green data center, cloud and grid computing and power optimization. Here computer resources are effectively utilized by replacing the data center standalone server system by artificial server so as to run the software by less number for large computers called as virtualized. Finally this paper is fulfilled by the advancement of recognized energy efficient computing


Author(s):  
Hang Zhou ◽  
Samina Kausar ◽  
Ningning Dong

Nowadays Energy Consumption has been a heavy burden on the enterprise cloud computing infrastructure. This paper focuses on the hardware factors in energy consumption. Inspired by DVFS, it proposes a new energy-efficient (EE) model. This paper formulates the scheduling problem and genetic algorithm is applied to obtain higher efficiency value. Simulations are implemented to verify the advantage of genetic algorithm. In addition, the robustness of our strategy is validated by modifying the relevant parameters of the experiment.


2018 ◽  
pp. 5-15
Author(s):  
Lyudmila Swistun ◽  
Taina Zavora ◽  
Yuliia Khudolii

The main goal of the study is to analyse the residential real estate market in Ukraine from the point of view of the need and the possibility of increasing its energy efficiency. Also, it aims to justify effective financial and credit mechanisms for ensuring measures to improve the thermal protection properties of residential and non- residential real estate, in particular by introducing energy efficiency development projects. With this research we investigated Ukraine's housing stock and utility tariffs and concluded that a beneficial strategy to be applied in Ukraine is the energy-efficient retrofit of real estate. This is one of the most effective ways to re-profile unclaimed real estate units in the existing state or to reconstruct inefficiently used buildings. Also, we reviewed selected methods of energy efficient residential real estate development and mechanisms of financing energy- efficient renovation of real estate used in the EU. And, in our view, the next step of the Ukraine in the direction of improving the energy efficiency of housing should be the effective operation of a dedicated/specific energy efficiency fund to ensure stable financing of housing modernization projects, which will allow for a comprehensive renovation of buildings and lead to significant annual energy savings in this end-use sector.


Sign in / Sign up

Export Citation Format

Share Document