scholarly journals The Improved Riccati Equation Method and Exact Solutions to mZK Equation

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaofeng Li

We utilize the improved Riccati equation method to construct more general exact solutions to nonlinear equations. And we obtain the travelling wave solutions involving parameters, which are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. When the parameters are taken as special values, the method provides not only solitary wave solutions but also periodic waves solutions. The method appears to be easier and more convenient by means of a symbolic computation system. Of course, it is also effective to solve other nonlinear evolution equations in mathematical physics.

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Yun-Mei Zhao ◽  
Ying-Hui He ◽  
Yao Long

A good idea of finding the exact solutions of the nonlinear evolution equations is introduced. The idea is that the exact solutions of the elliptic-like equations are derived using the simplest equation method and the modified simplest equation method, and then the exact solutions of a class of nonlinear evolution equations which can be converted to the elliptic-like equation using travelling wave reduction are obtained. For example, the perturbed nonlinear Schrödinger’s equation (NLSE), the Klein-Gordon-Zakharov (KGZ) system, the generalized Davey-Stewartson (GDS) equations, the Davey-Stewartson (DS) equations, and the generalized Zakharov (GZ) equations are investigated and the exact solutions are presented using this method.


Author(s):  
M. M. El-Horbaty ◽  
F. M. Ahmed

An extended Tanh-function method with Riccati equation is presented for constructing multiple exact travelling wave solutions of some nonlinear evolution equations which are particular cases of a generalized equation. The results of solitary waves are general compact forms with non-zero constants of integration. Taking the full advantage of the Riccati equation improves the applicability and reliability of the Tanh method with its extended form.


2016 ◽  
Vol 71 (8) ◽  
pp. 703-713 ◽  
Author(s):  
Burcu Ayhan ◽  
M. Naci Özer ◽  
Ahmet Bekir

AbstractIn this article, we applied the method of multiple scales for Korteweg–de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The$\left( {{{G'} \over G}} \right)$-expansion methods and the$\left( {{{G'} \over G},{\rm{ }}{1 \over G}} \right)$-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).


2016 ◽  
Vol 12 (6) ◽  
pp. 6318-6334
Author(s):  
Luwai Wazzan ◽  
Shafeek A Ghaleb

A modification of the generalized projective Riccati equation method is proposed to treat some nonlinear evolution equations and obtain their exact solutions. Some known methods are obtained as special cases of the proposed method. In addition, the method is implemented to find new exact solutions for the well-known Dreinfelds-Sokolov-Wilson system of nonlinear partial differential equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
M. Ali Akbar ◽  
Norhashidah Hj. Mohd. Ali ◽  
E. M. E. Zayed

A generalized and improved(G′/G)-expansion method is proposed for finding more general type and new travelling wave solutions of nonlinear evolution equations. To illustrate the novelty and advantage of the proposed method, we solve the KdV equation, the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation and the strain wave equation in microstructured solids. Abundant exact travelling wave solutions of these equations are obtained, which include the soliton, the hyperbolic function, the trigonometric function, and the rational functions. Also it is shown that the proposed method is efficient for solving nonlinear evolution equations in mathematical physics and in engineering.


2012 ◽  
Vol 17 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Ahmet Yildirim ◽  
Ameneh Samiei Paghaleh ◽  
Mohammad Mirzazadeh ◽  
Hossein Moosaei ◽  
Anjan Biswas

In this present work, the simplest equation method is used to construct exact solutions of the DS-I and DS-II equations. The simplest equation method is a powerful solution method for obtaining exact solutions of nonlinear evolution equations. This method can be applied to nonintegrable equations as well as to integrable ones.


2014 ◽  
Vol 1 (2) ◽  
pp. 140038 ◽  
Author(s):  
Md. Shafiqul Islam ◽  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Antonio Mastroberardino

The purpose of this article is to present an analytical method, namely the improved F -expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.


Sign in / Sign up

Export Citation Format

Share Document