scholarly journals Semiclassical Description of Anisotropic Magnets for Spin

2012 ◽  
Vol 2012 ◽  
pp. 1-3 ◽  
Author(s):  
Khikmat Muminov ◽  
Yousef Yousefi

Nonlinear equations describing one-dimensional non-Heisenberg ferromagnetic model are studied by the use of generalized coherent states in a real parameterization. Also, dissipative spin wave equation for dipole and quadruple branches is obtained if there is a small linear excitation from the ground state.

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Yousef Yousefi ◽  
Khikmat Kh. Muminov

Equations describing one-dimensional non-Heisenberg model are studied by use of generalized coherent states in real parameterization, and then dissipative spin wave equation for dipole and quadrupole branches is obtained if there is a small linear excitation from the ground state. Finally, it is shown that for such exchange-isotropy Hamiltonians, optical branch of spin wave is nondissipative.


2006 ◽  
Vol 21 (12) ◽  
pp. 2635-2644 ◽  
Author(s):  
Q. H. LIU ◽  
H. ZHUO

The Perelomov and the Barut–Girardello SU(1, 1) coherent states for harmonic oscillator in one-dimensional half space are constructed. Results show that the uncertainty products ΔxΔp for these two coherent states are bound from below [Formula: see text] that is the uncertainty for the ground state, and the mean values for position x and momentum p in classical limit go over to their classical quantities respectively. In classical limit, the uncertainty given by Perelomov coherent does not vanish, and the Barut–Girardello coherent state reveals a node structure when positioning closest to the boundary x = 0 which has not been observed in coherent states for other systems.


2013 ◽  
Vol 20 (03) ◽  
pp. 1340004 ◽  
Author(s):  
Antonino Messina ◽  
Gheorghe Drăgănescu

The construction of a class of unitary operators generating linear superpositions of generalized coherent states from the ground state of a quantum harmonic oscillator is reported. Such a construction, based on the properties of a new ad hoc introduced set of hermitian operators, leads to the definition of new basis in the oscillator Hilbert space, extending in a natural way the displaced Fock states basis. The potential development of our method and our results are briefly outlined.


2021 ◽  
Vol 130 (2) ◽  
pp. 025104
Author(s):  
Misael Ruiz-Veloz ◽  
Geminiano Martínez-Ponce ◽  
Rafael I. Fernández-Ayala ◽  
Rigoberto Castro-Beltrán ◽  
Luis Polo-Parada ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


2020 ◽  
Vol 26 ◽  
pp. 7
Author(s):  
Hui Wei ◽  
Shuguan Ji

This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with x-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with an approximation argument, we prove that there exist infinitely many periodic solutions whenever the period is a rational multiple of the length of the spatial interval. The proof is essentially based on the spectral properties of the wave operator with x-dependent coefficients.


Sign in / Sign up

Export Citation Format

Share Document