scholarly journals Enhanced Hydrogen Production over C-Doped CdO Photocatalyst in NaS/NaSO Solution under Visible Light Irradiation

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Quan Gu ◽  
Huaqiang Zhuang ◽  
Jinlin Long ◽  
Xiaohan An ◽  
Huan Lin ◽  
...  

The C-doped CdO photocatalysts were simply prepared by high-temperature solid-state process. The as-prepared photocatalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the carbon was doped into CdO, resulting in the red-shift of the optical absorption of CdO. The photocatalytic behavior of CdO and C-doped CdO was evaluated under the visible light irradiation by using the photocatalytic hydrogen evolution as a model reaction. The C-doped CdO photocatalysts had higher photocatalytic activity over parent CdO under visible light irradiation. The results indicated that the H2production was due to the existence of CdS and the enhancement of visible light photocatalytic activity of H2production was originated from the doping of carbon into the CdO lattice. The probably reaction mechanism was also discussed and proposed.

2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950085 ◽  
Author(s):  
Di Zhao ◽  
Xuezheng An ◽  
Yaxian Sun ◽  
Guihua Li ◽  
Hongyan Liu ◽  
...  

p-n heterojunction Ag2CO3/Ag3PO4/Ni thin films were prepared by electrochemical co-deposition. The surface morphology and structural properties of the thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic (PC) properties of the Ag2CO3/Ag3PO4/Ni composite thin films were investigated by their ability to degrade rhodamine B (RhB) and Congo red (CR) under visible light irradiation. The results showed that the photodegradation efficiency of RhB by an Ag2CO3/Ag3PO4/Ni thin film under visible-light irradiation for 30[Formula: see text]min (98.84%) was 2.64 times higher than that of an Ag3PO4/Ni thin film and 3.44 times higher than of an Ag2CO3/Ni thin film. The presence of a [Formula: see text]-[Formula: see text] heterojunction greatly increased the charge conductivity of the film and its ability to photocatalytically reduce dissolved oxygen, which are the main reasons for the improved PC performance of the Ag2CO3/Ag3PO4/Ni films.


2018 ◽  
Vol 9 ◽  
pp. 829-841 ◽  
Author(s):  
Maya Endo ◽  
Zhishun Wei ◽  
Kunlei Wang ◽  
Baris Karabiyik ◽  
Kenta Yoshiiri ◽  
...  

Commercial titania photocatalysts were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and oxidized (shell) forms, whereas gold was mainly zero valent. The obtained noble metal-modified samples were examined with regard to antibacterial (Escherichia coli(E. coli)) and antifungal (Aspergillus niger(A. niger),Aspergillus melleus(A. melleus),Penicillium chrysogenum(P. chrysogenum),Candida albicans(C. albicans)) activity under visible-light irradiation and in the dark using disk diffusion, suspension, colony growth (“poisoned food”) and sporulation methods. It was found that silver-modified titania, besides remarkably high antibacterial activity (inhibition of bacterial proliferation), could also decompose bacterial cells under visible-light irradiation, possibly due to an enhanced generation of reactive oxygen species and the intrinsic properties of silver. Gold-modified samples were almost inactive against bacteria in the dark, whereas significant bactericidal effect under visible-light irradiation suggested that the mechanism of bacteria inactivation was initiated by plasmonic excitation of titania by localized surface plasmon resonance of gold. The antifungal activity tests showed efficient suppression of mycelium growth by bare titania, and suppression of mycotoxin generation and sporulation by gold-modified titania. Although, the growth of fungi was hardly inhibited through disc diffusion (inhibition zones around discs), it indicates that gold does not penetrate into the media, and thus, a good stability of plasmonic photocatalysts has been confirmed. In summary, it was found that silver-modified titania showed superior antibacterial activity, whereas gold-modified samples were very active against fungi, suggesting that bimetallic photocatalysts containing both gold and silver should exhibit excellent antimicrobial properties.


2021 ◽  
Author(s):  
N Sujatha ◽  
M Meenachi ◽  
S Mohammed Harshulkhanb ◽  
H.H Hegazy

Abstract In later years, numerous viable photocatalysts have been created in order to illuminate the issues of natural toxins. In this work, heterostructured photocatalysts Ag3VO4/g-C3N4 were prepared by effortless hydrothermal route in order to anchor Ag3VO4 on the surface of the g-C3N4 nanosheets. The prepared samples were fairly characterized using X-ray diffraction (XRD), Energy dispersive analysis of X-rays (EDAX), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence, and X-ray photoelectron spectroscopy (XPS) techniques. The photocatalytic activity of the samples was evaluated by degrading malachite green (MG) and 2,4 dimethyl phenol (DMP) in aqueous solution under visible light irradiation. Compared with Ag3VO4 and g-C3N4, the heterojuncted photocatalyst 50 wt% Ag3VO4/g-C3N4 exhibits the best activity such as high degradation efficiency (99%), high apparent constant (0.0923 min− 1) and long term stability towards DMP under visible light irradiation. The development of a phase scheme heterojunction between Ag3VO4 and g-C3N4 improved the photocatalytic efficiency of Ag3VO4/g-C3N4 composites. Furthermore, the porous structure of g-C3N4 and the effect of Ag surface plasmon resonance (SPR) speed up the isolation and transfer of electron-hole pairs, reducing the likelihood of recombination.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunling Zou ◽  
Xianshou Huang ◽  
Tao Yu ◽  
Xiaoqiang Tong ◽  
Yan Li ◽  
...  

Abstract Cu-doped TiO2 having a brookite phase and showing enhanced visible light photocatalytic activity was synthesized using a mild solvothermal method. The as-prepared samples were characterized by various techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy. Photocatalytic activity of Cu-doped brookite TiO2 nanoparticles was evaluated by photodegradation of methylene blue under visible light irradiation. The X-ray diffraction analysis showed that the crystallite size of Cu-doped brookite TiO2 samples decreased with the increase of Cu concentration in the samples. The UV-Vis diffuse reflectance spectroscopy analysis of the Cu-doped TiO2 samples showed a shift to lower energy levels in the band gap compared with that of bare phase brookite TiO2. Cu doped brookite TiO2 can obviously improve its visible light photocatalytic activity because of Cu ions acting as electron acceptors and inhibiting electron-hole recombination. The brookite TiO2 sample with 7.0 wt.% Cu showed the highest photocatalytic activity and the corresponding degradation rate of MB (10 mg/L) reached to 87 % after visible light illumination for 120 min, much higher than that of bare brookite TiO2 prepared under the same conditions (78 %).


2011 ◽  
Vol 391-392 ◽  
pp. 1117-1122 ◽  
Author(s):  
Qi Xiao ◽  
Chi Yao

The C, N, S-tridoped TiO2nanosheets are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and UV–vis diffuse reflectance spectroscopy. The UV-diffuse reflectance spectra of all the C, N, S-tridoped TiO2nanosheets greatly extends the absorption edge into the visible light region, which can be attributed to C, N, S-tridoping in the form of cation C-doping, interstitial N-doping, anionic S-doping, and adsorbed SO42-ions states. The C, N, S-tridoped TiO2nanosheets exhibits high visible light photocatalytic activity, and the xanthate concentration reduce as much as 100% in 120 min. All these indicate that C, N, S-tridoped TiO2nanosheets photocatalysts are promising visible light photocatalyst for the practical application.


2007 ◽  
Vol 72 (3) ◽  
pp. 379-391 ◽  
Author(s):  
Lin Zhou ◽  
Xin Tan ◽  
Lin Zhao ◽  
Ming Sun

In order to utilize visible light and enhance the catalytic efficiency in photocatalytic conversion of NOx, nitrogen and platinum atoms were doped in commercially available photocatalytic TiO2 powders by impregnating and photodeposition methods, respectively. X-ray diffraction (XRD) showed that the crystal structures of TiO2 were not changed after the doping process. Analysis by X-ray photoelectron spectroscopy (XPS) indicated that N atoms were incorporated in the bulk phase of TiO2 as N-Ti-O linkages and Pt atoms were at the surface. A significant shift of the absorption edge to lower energy and higher absorption in the visible light region were observed. This Pt,N-codoped TiO2 powder exhibited excellent photocatalytic activity and fairly stable chemical property for the degradation of NOx under visible light irradiation. The sample mixed with 20 wt.% ammonium carbonate and doped with 0.5 at.% platinum atoms showed the best photocatalytic activity and its activity can be restored by rinsing with water after long-term operation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Min Zhang ◽  
Juan Wu ◽  
DanDan Lu ◽  
Jianjun Yang

A series of W, N codoped TiO2nanotube arrays with different dopant contents were fabricated by anodizing in association with hydrothermal treatment. The samples were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible light diffuse reflection spectroscopy. Moreover, the photocatalytic activity of W and N codoped TiO2nanotube arrays was evaluated by degradation of methylene blue under visible light irradiation. It was found that N in codoped TNAs exists in the forms of Ti-N-O, while W exists as W6+by substituting Ti in the lattice of TiO2. In the meantime, W and N codoping successfully extends the absorption of TNAs into the whole visible light region and results in remarkably enhanced photocatalytic activity under visible light irradiation. The mechanism of the enhanced photocatalytic activity could be attributed to (i) increasing number of hydroxyl groups on the surface of TNAs after the hydrothermal treatment, (ii) a strong W-N synergistic interaction leads to produce new states, narrow the band gap which decrease the recombination effectively, and then greatly increase the visible light absorption and photocatalytic activity; (iii) W ions with changing valences in all codoped samples which are considered to act as trapping sites, effectively decrease the recombination rate of electrons and holes, and improve the photocatalytic activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pengyu Dong ◽  
Yan Hao ◽  
Peiyang Gao ◽  
Entian Cui ◽  
Qinfang Zhang

Ag3PO4triangular prism was synthesized by a facile chemical precipitation approach by simply adjusting external ultrasonic condition. The as-synthesized Ag3PO4triangular prism was characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectra, and ultraviolet-visible diffuse reflectance (UV-vis DRS) absorption spectra. The photocatalytic activity of Ag3PO4triangular prism was evaluated by photodegradation of organic methylene blue (MB), rhodamine B (RhB), and phenol under visible light irradiation. Results showed that Ag3PO4triangular prism exhibited higher photocatalytic activity than N-doped TiO2and commercial TiO2(P25) under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document