Photocatalytic properties of p-n heterojunction Ag2CO3/Ag3PO4/Ni thin films under visible light

2019 ◽  
Vol 12 (06) ◽  
pp. 1950085 ◽  
Author(s):  
Di Zhao ◽  
Xuezheng An ◽  
Yaxian Sun ◽  
Guihua Li ◽  
Hongyan Liu ◽  
...  

p-n heterojunction Ag2CO3/Ag3PO4/Ni thin films were prepared by electrochemical co-deposition. The surface morphology and structural properties of the thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic (PC) properties of the Ag2CO3/Ag3PO4/Ni composite thin films were investigated by their ability to degrade rhodamine B (RhB) and Congo red (CR) under visible light irradiation. The results showed that the photodegradation efficiency of RhB by an Ag2CO3/Ag3PO4/Ni thin film under visible-light irradiation for 30[Formula: see text]min (98.84%) was 2.64 times higher than that of an Ag3PO4/Ni thin film and 3.44 times higher than of an Ag2CO3/Ni thin film. The presence of a [Formula: see text]-[Formula: see text] heterojunction greatly increased the charge conductivity of the film and its ability to photocatalytically reduce dissolved oxygen, which are the main reasons for the improved PC performance of the Ag2CO3/Ag3PO4/Ni films.

2011 ◽  
Vol 364 ◽  
pp. 238-242 ◽  
Author(s):  
Kimi Melody ◽  
Yuliati Leny ◽  
Mustaffa Shamsuddin

A series of In0.1SnxZn0.85-2xS solid solutions was synthesized by hydrothermal method and employed as photocatalyst for photocatalytic hydrogen evolution under visible light irradiation. The structures, optical properties and morphologies of the solid solutions were studied by X-ray diffraction, diffuse reflectance UV–visible spectroscopy and field emission scanning electron microscopy. From the characterizations, it was confirmed that In0.1SnxZn0.85-2xS solid solution can be obtained and they have nanosized particles. The highest photocatalytic activity was observed on In0.1Sn0.03Zn0.79S photocatalyst, with average rate of hydrogen production 3.05 mmol/h, which was 1.2 times higher than the In0.1Zn0.85S photocatalyst.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2013 ◽  
Vol 864-867 ◽  
pp. 601-604
Author(s):  
Jin Zhang ◽  
Yu Xin Sun

A novel attapulgite clay-based composite (BiVO4/attapulgite) was successfully prepared as a heterogeneous photocatalyst for degradation of rhodamine B (RhB) dye solution under visible light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and microanalysis by energy dispersive spectrometry (EDS), and UV-visible diffuse reflectance spectra (DRS). The results showed that monoclinic BiVO4particles were loaded successfully on to the surface of attapulgite fibers and were widely dispersed. The DRS spectrum reveals that the BiVO4/attapulgite composite had much stronger absorption in the visible light range of 420-800 nm. Correspondingly, the BiVO4/attapulgite composite showed significantly higher activity in degrading RhB solution under visible-light irradiation compared to that of pure BiVO4.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Quan Gu ◽  
Huaqiang Zhuang ◽  
Jinlin Long ◽  
Xiaohan An ◽  
Huan Lin ◽  
...  

The C-doped CdO photocatalysts were simply prepared by high-temperature solid-state process. The as-prepared photocatalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the carbon was doped into CdO, resulting in the red-shift of the optical absorption of CdO. The photocatalytic behavior of CdO and C-doped CdO was evaluated under the visible light irradiation by using the photocatalytic hydrogen evolution as a model reaction. The C-doped CdO photocatalysts had higher photocatalytic activity over parent CdO under visible light irradiation. The results indicated that the H2production was due to the existence of CdS and the enhancement of visible light photocatalytic activity of H2production was originated from the doping of carbon into the CdO lattice. The probably reaction mechanism was also discussed and proposed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pengyu Dong ◽  
Yan Hao ◽  
Peiyang Gao ◽  
Entian Cui ◽  
Qinfang Zhang

Ag3PO4triangular prism was synthesized by a facile chemical precipitation approach by simply adjusting external ultrasonic condition. The as-synthesized Ag3PO4triangular prism was characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectra, and ultraviolet-visible diffuse reflectance (UV-vis DRS) absorption spectra. The photocatalytic activity of Ag3PO4triangular prism was evaluated by photodegradation of organic methylene blue (MB), rhodamine B (RhB), and phenol under visible light irradiation. Results showed that Ag3PO4triangular prism exhibited higher photocatalytic activity than N-doped TiO2and commercial TiO2(P25) under visible light irradiation.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hang Nguyen Thai Phung ◽  
Van Nguyen Khanh Tran ◽  
Lam Thanh Nguyen ◽  
Loan Kieu Thi Phan ◽  
Phuong Ai Duong ◽  
...  

MoS2/TiO2 heterostructure thin films were fabricated by sol-gel and chemical bath deposition methods. Crystal structure, surface morphology, chemical states of all elements, and optical property of the obtained thin films were characterized by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis spectroscopy techniques, respectively. Photocatalytic activity of all thin films was evaluated by measuring decomposition rate of methylene blue solution under visible light irradiation. The results indicate that ultrathin MoS2 film on TiO2-glass substrate improves photocatalytic activity of TiO2 in the visible light due to the efficient absorption of visible photon of MoS2 few layers and the transfer of electrons from MoS2 to TiO2. All MoS2/TiO2 heterostructure thin films exhibit higher visible light photocatalytic activity than that of pure MoS2 and TiO2 counterparts. The best MoS2/TiO2 heterostructure thin film at MoS2 layer deposition time of 45 minutes can decompose about 60% MB solution after 150 minutes under visible light irradiation. The mechanism of the enhancement for visible-photocatalytic activity of MoS2/TiO2 heterostructure thin film was also discussed.


2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


2010 ◽  
Vol 75 (11) ◽  
pp. 1139-1148 ◽  
Author(s):  
Dmitry S. Perekalin ◽  
Evgeniya A. Trifonova ◽  
Ivan V. Glukhov ◽  
Josef Holub ◽  
Alexander R. Kudinov

Reaction of the tricarbollide anion [7,8,9-C3B8H11]– (1a) with the naphthalene complex [CpRu(C10H8)]+ under visible light irradiation in CH2Cl2 gives the 12-vertex closo-ruthenacarborane 1-Cp-1,2,3,5-RuC3B8H11 (2; 87% yield). This complex was also obtained by reaction of 1a with CpRu(cod)Cl (97%). Upon heating at 80 °C in toluene 2 rearranges into isomer 1-Cp-1,2,4,10-RuC3B8H11 (3; 63%). Irradiation of 1a with [CpRu(C10H8)]+ in acetone gives the 11-vertex closo-1-Cp-1,2,3,4-RuC3B7H10 (4; 32%). The latter was also prepared by reaction of 1a with [CpRu(MeCN)3]+ (59%). Compound 2 slowly undergoes cage contraction in acetone giving 4. Irradiation of 1a with [Cp*Ru(C10H8)]+ affords the isomeric 12-vertex closo-ruthenacarboranes 1-Cp*-1,2,3,5-RuC3B8H11 and 1-Cp*-1,2,4,10-RuC3B8H11 (2.2:1 ratio; 56%). Reaction of the amino-substituted tricarbollide anion [7-tBuNH-7,8,9-C3B8H10]– with [(C5R5)Ru(C10H8)]+ (R = H, Me) selectively gives 12-vertex closo-ruthenacarboranes 1-(C5R5)-12-tBuNH-1,2,4,12-RuC3B8H10 (ca. 50%). The structures of 2 and 4 were confirmed by X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document