scholarly journals Modified Chebyshev-Picard Iteration Methods for Station-Keeping of Translunar Halo Orbits

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaoli Bai ◽  
John L. Junkins

The halo orbits around the Earth-MoonL2libration point provide a great candidate orbit for a lunar communication satellite, where the satellite remains above the horizon on the far side of the Moon being visible from the Earth at all times. Such orbits are generally unstable, and station-keeping strategies are required to control the satellite to remain close to the reference orbit. A recently developed Modified Chebyshev-Picard Iteration method is used to compute corrective maneuvers at discrete time intervals for station-keeping of halo orbit satellite, and several key parameters affecting the mission performance are analyzed through numerical simulations. Compared with previously published results, the presented method provides a computationally efficient station-keeping approach which has a simple control structure that does not require weight turning and, most importantly, does not need state transition matrix or gradient information computation. The performance of the presented approach is shown to be comparable with published methods.

1990 ◽  
Vol 123 ◽  
pp. 391-395 ◽  
Author(s):  
Robert W. Farquhar ◽  
David W. Dunham

AbstractThe Sun-Earth libration points, L1 and L2, are located 1.5 million kilometers from the Earth towards and away from the Sun. Halo orbits about these points have significant advantages for space observatories in terms of viewing geometry, thermal and radiation environment, and delta-V expediture.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yang Jin ◽  
Bo Xu

In this paper, a modified targeting strategy is developed for missions on libration point orbits (LPOs) in the real Earth-Moon system. In order to simulate a station-keeping procedure in a dynamic model as realistic as possible, LPOs generated in the circular restricted three-body problem (CRTBP) are discretized and reconverged in a geocentric inertial system for later simulations. After that, based on the dynamic property of the state transition matrix, a modified strategy of selecting target points for station-keeping is presented to reduce maneuver costs. By considering both the solar gravity and radiation pressure in a nominal LPO design, station-keeping simulations about fuel consumption for real LPOs around both collinear and triangular libration points are performed in a high-fidelity ephemeris model. Results show the effectivity of the modified strategy with total maneuver costs reduced by greater than 10% for maintaining triangular LPOs.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio Fernando Bertachini de Almeida Prado

The present paper has the goal of developing a new criterion to search for orbits that minimize the fuel consumption for station-keeping maneuvers. This approach is based on the integral over the time of the perturbing forces. This integral measures the total variation of velocity caused by the perturbations in the spacecraft, which corresponds to the equivalent variation of velocity that an engine should deliver to the spacecraft to compensate the perturbations and to keep its orbit Keplerian all the time. This integral is a characteristic of the orbit and the set of perturbations considered and does not depend on the type of engine used. In this sense, this integral can be seen as a criterion to select the orbit of the spacecraft. When this value becomes larger, more consumption of fuel is required for the station keeping, and, in this sense, less interesting is the orbit. This concept can be applied to any perturbation. In the present research, as an example, the perturbation caused by a third body is considered. Then, numerical simulations considering the effects of the Sun and the Moon in a satellite around the Earth are shown to exemplify the method.


This lecture is an attempt to review current knowledge about certain terrestrial phenomena with the twofold purpose: ( a ) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment, ( b ) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions, etc., are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. As regards astronomical effects on Earth: (i) There is a good case - not yet overwhelming - for the currently widely accepted view that fluctuations of glaciation within an ice-epoch result from changes of insolation accompanying fluctuations of the Earth’s motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun’s motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. (ii) Impacts of planetesimals may be more important than hitherto recognized. Among astronomical results regarding the Sun, while the intensity of solar ‘activity’ is variable, terrestrial effects provide no confirmation that the Sun is a ‘variable star’. Regarding the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed; certain concepts that would call for consideration in any extended review are mentioned.


2020 ◽  
Vol 177 ◽  
pp. 111-121
Author(s):  
Xingji He ◽  
Yuying Liang ◽  
Ming Xu ◽  
Yaru Zheng

2016 ◽  
Vol 26 (05) ◽  
pp. 1630013 ◽  
Author(s):  
Amanda F. Haapala ◽  
Kathleen C. Howell

The Earth–Moon libration points are of interest for future missions and have been proposed for both storage of propellant and supplies for lunar missions and as locations to establish space-based facilities for human missions. Thus, further development of an available transport network in the vicinity of the Moon is valuable. In this investigation, a methodology to search for transfers between periodic lunar libration point orbits is developed, and a catalog of these transfers is established, assuming the dynamics associated with the Earth–Moon circular restricted three-body problem. Maneuver-free transfers, i.e. heteroclinic and homoclinic connections, are considered, as well as transfers that require relatively small levels of [Formula: see text]. Considering the evolution of Earth–Moon transfers as the mass parameter is reduced, a relationship emerges between the available transfers in the Earth–Moon system and maneuver-free transfers that exist within the Hill three-body problem. The correlation between transfers in these systems is examined and offers insight into the existence of solutions within the catalog. To demonstrate the persistence of the catalog transfers in a higher-fidelity model, several solutions are transitioned to a Sun–Earth–Moon ephemeris model with the inclusion of solar radiation pressure and lunar gravity harmonics. The defining characteristics are preserved in the high-fidelity model, validating both the techniques employed for this investigation and the solutions computed within the catalog.


Sign in / Sign up

Export Citation Format

Share Document