scholarly journals Antimicrobial Activity of Single-Walled Carbon Nanotubes Suspended in Different Surfactants

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Lifeng Dong ◽  
Alex Henderson ◽  
Christopher Field

We investigated the antibacterial activity of single-walled carbon nanotubes (SWCNTs) dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity againstSalmonella enterica,Escherichia coli, andEnterococcus faeciumand thereby was used to disperse bundled SWCNTs in order to study nanotube antibiotic activity. SWCNTs exhibited antibacterial characteristics for bothS. entericaandE. coli. With the increase of nanotube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5 min to 2 h. Our findings indicate that carbon nanotubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display.

2008 ◽  
Vol 23 (3) ◽  
pp. 632-636 ◽  
Author(s):  
Inderpreet Singh ◽  
P.K. Bhatnagar ◽  
P.C. Mathur ◽  
L.M. Bharadwaj

Commercially procured single-walled carbon nanotubes were dispersed in 2 wt% solution of sodium cholate and also in 1 wt% solution of sodium dodecyl sulfate. The absorption spectrum of the suspensions was studied in ultraviolet–visible–near-infrared (UV–vis–NIR) range. Two distinct bands, each containing three peaks, were observed in NIR range for both the suspensions. These peaks correspond to transitions between van Hove singularities E11 and E22 in the density of states of the semiconducting nanotubes. Comparing positions of the observed peaks with the empirical Kataura plot, the diameters and chiralities of the nanotubes were estimated. Using tight binding approximations, the diameter of the nanotubes was also estimated theoretically. Discrepancies between the theoretically calculated diameters and those obtained by empirical Kataura plots are found to be higher for E11 peaks. It has been suggested that the reason for this discrepancy is that the observed E11 peaks are blue-shifted due to Coulomb interactions and exciton formation.


2017 ◽  
Vol Volume 12 ◽  
pp. 6647-6659 ◽  
Author(s):  
Mohyeddin Assali ◽  
Abdel Naser Zaid ◽  
Farah Abdallah ◽  
Motasem Almasri ◽  
Rasha Khayyat

2006 ◽  
Vol 05 (04n05) ◽  
pp. 407-411
Author(s):  
JUN JIAO ◽  
LIFENG DONG ◽  
VACHARA CHIRAYOS ◽  
JOCELYN BUSH ◽  
JAMES HEDBERG

Two effective methods for dispersion and alignment of single-walled carbon nanotubes (SWCNTs) were developed. One is the floating-potential dielectrophoresis (FPD) method, which can achieve the alignment of individual SWCNTs between two electrodes with high yield (more than 30%) and high repeatability. The second is the gas blow method. Using the shear forces associated with a rapidly moving fluid, SWCNTs were positioned in a direction corresponding to the flow vector of the fluid. This technique shows great potential for scaling up the displacement of SWCNTs with controlled orientations. Various dispersion agents including ethanol, dichlorobenzene, sodium dodecyl sulfate (SDS) and DNA were investigated with these two methods. It was found that SDS was the most effective dielectric medium used for FPD dispersion and alignment of SWCNTs. The result of electric measurement for the individual SWCNTs aligned between two electrodes suggests that, using the FPD method, both metallic and semiconducting SWCNTs could be aligned between the electrodes. The individual SWCNT resistances measured range from 20 KΩ to 5 MΩ suggesting a high contact resistance between an aligned SWCNT and metal electrodes. High resolution transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterization reveal DNA molecules wrapped around the SWNCTs after the dispersion process which may affect the intrinsic properties of SWCNTs.


2007 ◽  
Vol 7 (11) ◽  
pp. 3727-3730
Author(s):  
Dokyung Yoon ◽  
Sun-Jung Kang ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Seunghyun Baik

We have investigated the degree of dispersion of single-walled carbon nanotubes (SWNTs) in solution using laser spectroscopic techniques. SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and duration of sonication and centrifugation. The absorption and fluorescence spectroscopic techniques were employed to characterize the different dispersion state of the prepared samples. Nanotube suspensions with better dispersion showed higher fluorescence and sharper absorption peaks. The fluorescence data were characterized as a function of the nanotube chirality, and absorption peak shifts were analyzed depending on the first and second van Hove singularities (vHs) of semiconducting nanotubes.


2011 ◽  
Vol 284-286 ◽  
pp. 750-754
Author(s):  
Zhenquan Tan ◽  
Hiroya Abe ◽  
Mikio Naito ◽  
Satoshi Ohara

A facile solution-chemical route was reported to deposit and arrange palladium (Pd) nanoparticles on single-walled carbon nanotubes (SWCNTs) using sodium dodecyl sulfate (SDS) as an organic soft template. SDS was previously formed supramolecular self-assembly on the walls of SWCNTs, which may act as adsorption sites of Pd (II) ions on SWCNTs. The Pd nanoparticles reduced by photo-reduction and formed one-dimensionally ordered arrangement on the surface of SWCNTs with a veriety of helices and tilted angles. Pd nanoparticles have an average size of 3 nm. The structure (distance, helix and tilted angle) of the ordered arrangements were determined by the supramolecular self-assembly of SDS wrapped on SWCNTs.


2007 ◽  
Vol 7 (11) ◽  
pp. 3727-3730 ◽  
Author(s):  
Dokyung Yoon ◽  
Sun-Jung Kang ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Seunghyun Baik

We have investigated the degree of dispersion of single-walled carbon nanotubes (SWNTs) in solution using laser spectroscopic techniques. SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and duration of sonication and centrifugation. The absorption and fluorescence spectroscopic techniques were employed to characterize the different dispersion state of the prepared samples. Nanotube suspensions with better dispersion showed higher fluorescence and sharper absorption peaks. The fluorescence data were characterized as a function of the nanotube chirality, and absorption peak shifts were analyzed depending on the first and second van Hove singularities (vHs) of semiconducting nanotubes.


2009 ◽  
Vol 14 (3) ◽  
pp. 133-138 ◽  
Author(s):  
TOMOMI KOSAKA ◽  
AKIE OHGAMI ◽  
TAKAKO NAKAMURA ◽  
TSUGUYORI OHANA ◽  
MASATOU ISHIHARA

Sign in / Sign up

Export Citation Format

Share Document