scholarly journals A Novel BLDC-Like DTC Control Technique for Induction Motors

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Andrea Rossi ◽  
Carlo Concari

DC brushless motors are widely adopted for their simplicity of control, even in sensorless configuration, and their high torque density. On the other hand, induction motors are very economical due to the absence of permanent magnets; for the same reason they can easily be driven in the flux-weakening region to attain a wide speed range. Nevertheless, high dynamic induction motors drives, based on field-oriented (FOC) or predictive control, require large amounts of computing power and are rather sensitive to motor parameter variations. This paper presents a simple DTC induction motor control algorithm based on a well-known BLDC control technique, which allows to realize a high dynamic induction motor speed control with wide speed range. The firmware implementation is very compact and occupies a low amount of program memory, comparable to volt-per-Hertz- (V/f-) based control algorithms. The novel control algorithm presents also good performance and low current ripple and can be implemented on a low-cost motion control DSP without resorting to high-frequency PWM.


2013 ◽  
Vol 5 (2) ◽  
pp. 87-92
Author(s):  
Anton Anton ◽  
Tuti Angraini

The Induction motors are found in industrial and domestic environments because of low cost of operation including, induction motors are widely used induction motor 1 phase and 3 phase. During operation of induction motors generally used at normal speed, but the specific purpose induction motors operated with variable speed. In order to obtain varying motor speed can be controlled using the inverter. The use of inverters here to give supplay voltage AC induction motor in which the magnitude of the frequency can be varied. Setting frequency of the inverter utilizing method pulse with modulation (PWM). The circuit used to build PWM, using Insulated Gate Bipolar Transistor (IGBT) technology. Values ​​obtained variable frequency ranging from 4 Hz to 50 Hz, and acquired motor speed ranging from 12 rpm up to 1390 rpm.









2015 ◽  
Vol 772 ◽  
pp. 365-372
Author(s):  
Ling Zhi Cao ◽  
Sheng Hao Yang

The detection of rotor position plays an important role in the motor speed-adjustment system. By analyzing the back-EMF method and its improved methods, we know the amplitude of back-EMF is too small to be detected when the motor run at low speed. A new detection method of rotor position has been proposed in this paper. It detects the zero crossing point of line terminal voltage difference to acquire the rotor position signal after a 90 degrees mechanical angle delay. The amplitude of line terminal voltage difference is large in wide speed range, so the rotor position signal can be accurately acquired in most situations. Simulation results proved that the new method can obtain the rotor position signal exactly in both high and low speed. It meets the wide speed range of motor.



Sign in / Sign up

Export Citation Format

Share Document