scholarly journals New Exact Solutions for a Higher-Order Wave Equation of KdV Type Using Extended F-Expansion Method

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yinghui He ◽  
Yun-Mei Zhao ◽  
Yao Long

The F-expansion method is used to find traveling wave solutions to various wave equations. By giving more solutions of the general subequation, an extended F-expansion method is introduced by Emmanuel. In our work, a generalized KdV type equation of neglecting the highest-order infinitesimal term, which is an important water wave model, is discussed by using the extended F-expansion method. And when the parameters satisfy certain relations, some new exact solutions expressed by Jacobi elliptic function, hyperbolic function, and trigonometric function are obtained. The related results are enriched.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yinghui He

TheG′/G-expansion method is a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems. In our work, exact traveling wave solutions of a generalized KdV type equation of neglecting the highest order infinitesimal term, which is an important water wave model, are discussed by theG′/G-expansion method and its variants. As a result, many new exact solutions involving parameters, expressed by Jacobi elliptic functions, hyperbolic functions, trigonometric function, and the rational functions, are obtained. These methods are more effective and simple than other methods and a number of solutions can be obtained at the same time. The related results are enriched.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yinghui He

The construction of exact solution for higher-dimensional nonlinear equation plays an important role in knowing some facts that are not simply understood through common observations. In our work,(4+1)-dimensional nonlinear Fokas equation, which is an important physical model, is discussed by using the extendedF-expansion method and its variant. And some new exact solutions expressed by Jacobi elliptic function, Weierstrass elliptic function, hyperbolic function, and trigonometric function are obtained. The related results are enriched.


2019 ◽  
Vol 23 (4) ◽  
pp. 2403-2411 ◽  
Author(s):  
Bo Xu ◽  
Sheng Zhang

In this paper, the (4+1)-dimensional Fokas equation is solved by the generalized F-expansion method, and new exact solutions with arbitrary functions are obtained. The obtained solutions include Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the generalized F-expansion method can be used for constructing exact solutions with arbitrary functions of some other high dimensional partial differential equations in fluids.


Author(s):  
Shuang Liu ◽  
Yao Ding ◽  
Jian-Guo Liu

AbstractBy employing the generalized$(G'/G)$-expansion method and symbolic computation, we obtain new exact solutions of the (3 + 1) dimensional generalized B-type Kadomtsev–Petviashvili equation, which include the traveling wave exact solutions and the non-traveling wave exact solutions showed by the hyperbolic function and the trigonometric function. Meanwhile, some interesting physics structure are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
E. M. E. Zayed ◽  
Shorog Al-Joudi

We construct the traveling wave solutions of the (1+1)-dimensional modified Benjamin-Bona-Mahony equation, the (2+1)-dimensional typical breaking soliton equation, the (1+1)-dimensional classical Boussinesq equations, and the (2+1)-dimensional Broer-Kaup-Kuperschmidt equations by using an extended -expansion method, whereGsatisfies the second-order linear ordinary differential equation. By using this method, new exact solutions involving parameters, expressed by three types of functions which are hyperbolic, trigonometric and rational function solutions, are obtained. When the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yun-Mei Zhao

Based on theF-expansion method, and the extended version ofF-expansion method, we investigate the exact solutions of the Kudryashov-Sinelshchikov equation. With the aid of Maple, more exact solutions expressed by Jacobi elliptic function are obtained. When the modulus m of Jacobi elliptic function is driven to the limits 1 and 0, some exact solutions expressed by hyperbolic function solutions and trigonometric functions can also be obtained.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhao Li ◽  
Tianyong Han

AbstractIn this paper, the bifurcation and new exact solutions for the ($2+1$ 2 + 1 )-dimensional conformable time-fractional Zoomeron equation are investigated by utilizing two reliable methods, which are generalized $(G'/G)$ ( G ′ / G ) -expansion method and the integral bifurcation method. The exact solutions of the ($2+1$ 2 + 1 )-dimensional conformable time-fractional Zoomeron equation are obtained by utilizing the generalized $(G'/G)$ ( G ′ / G ) -expansion method, these solutions are classified as hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Giving different parameter conditions, many integral bifurcations, phase portraits, and traveling wave solutions for the equation are obtained via the integral bifurcation method. Graphical representations of different kinds of the exact solutions reveal that the two methods are of significance for constructing the exact solutions of fractional partial differential equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yinghui He

Based on the F-expansion method with a new subequation, an improved F-expansion method is introduced. As illustrative examples, some new exact solutions expressed by the Jacobi elliptic function of the Kudryashov-Sinelshchikov equation are obtained. When the modulusmof the Jacobi elliptic function is driven to the limits 1 and 0, some exact solutions expressed by hyperbolic function and trigonometric function can also be obtained. The method is straightforward and concise and is promising and powerful for other nonlinear evolution equations in mathematical physics.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


Sign in / Sign up

Export Citation Format

Share Document