scholarly journals QC2: A QoS Control Scheme with Quick Convergence in Wireless Sensor Networks

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hao-Li Wang ◽  
Wei-Lun Hung

In wireless sensor networks, too many or too few power-on sensors may cause the waste of resources or poor sensing efficiency; thus, controlling the number of active sensors to meet the predicted target number is the purpose of this research. However, the total number of sensors may be unstable because of the increment and damage to the sensors. It is difficult to control the number of active sensors to meet the predicted target in this condition. Previous studies proposed the Gur Game algorithm to solve this problem. However, the convergence time of the Gur Game algorithm is too long, which causes sensors to consume excessive power and waste resources. Therefore, this paper proposed the QoS Control with Quick Convergence (QC2). This method utilizes total virtual value to accelerate the convergence operation from the number of sensors to the target number. The experiment result shows that the QC2 method can cause the number of sensors to converge rapidly with the target value and that QC2 can be over a hundred times faster than the Gur Game algorithm with regard to convergence.

2013 ◽  
Vol 756-759 ◽  
pp. 2288-2293
Author(s):  
Shu Guang Jia ◽  
Li Peng Lu ◽  
Ling Dong Su ◽  
Gui Lan Xing ◽  
Ming Yue Zhai

Smart grid has become one hot topic at home and abroad in recent years. Wireless Sensor Networks (WSNs) has applied to lots of fields of smart grid, such as monitoring and controlling. We should ensure that there are enough active sensors to satisfy the service request. But, the sensor nodes have limited battery energy, so, how to reduce energy consumption in WSNs is a key challenging. Based on this problem, we propose a sleeping scheduling model. In this model, firstly, the sensor nodes round robin is used to let as little as possible active nodes while all the targets in the power grid are monitored; Secondly, for removing the redundant active nodes, the sensor nodes round robin is further optimized. Simulation result indicates that this sleep mechanism can save the energy consumption of every sensor node.


Sign in / Sign up

Export Citation Format

Share Document