scholarly journals Integrally Small Perturbations of Semigroups and Stability of Partial Differential Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Michael Gil'

Let be a generator of an exponentially stable operator semigroup in a Banach space, and let   be a linear bounded variable operator. Assuming that is sufficiently small in a certain sense for the equation , we derive exponential stability conditions. Besides, we do not require that for each , the “frozen” autonomous equation is stable. In particular, we consider evolution equations with periodic operator coefficients. These results are applied to partial differential equations.

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 613-618
Author(s):  
Şamil Akçağıl

AbstractSolving nonlinear evolution equations is an important issue in the mathematical and physical sciences. Therefore, traditional methods, such as the method of characteristics, are used to solve nonlinear partial differential equations. A general method for determining analytical solutions for partial differential equations has not been found among traditional methods. Due to the development of symbolic computational techniques many alternative methods, such as hyperbolic tangent function methods, have been introduced in the last 50 years. Although all of them were introduced as a new method, some of them are similar to each other. In this study, we examine the following four important methods intensively used in the literature: the tanh–coth method, the modified Kudryashov method, the F-expansion method and the generalized Riccati equation mapping method. The similarities of these methods attracted our attention, and we give a link between the methods and a system of projective Riccati equations. It is possible to derive new solution methods for nonlinear evolution equations by using this connection.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1547
Author(s):  
Stephen C. Anco ◽  
Bao Wang

A geometrical formulation for adjoint-symmetries as one-forms is studied for general partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are shown to have another geometrical formulation given by one-forms that are invariant under the flow generated by the system on the solution space. This result is generalized to systems of evolution equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up to a functional multiplier of a normal one-form associated with the constraint equations. All of the results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.


1999 ◽  
Vol 60 (2) ◽  
pp. 319-330
Author(s):  
Anibal Rodriguez-Bernal ◽  
Bixiang Wang

In this paper, we study approximate inertial manifolds for nonlinear evolution partial differential equations which possess symmetry. The relationship between symmetry and dimensions of approximate inertial manifolds is established. We demonstrate that symmetry can reduce the dimensions of an approximate inertial manifold. Applications for concrete evolution equations are given.


2016 ◽  
Vol 16 (06) ◽  
pp. 1650025
Author(s):  
Hong Yin

In this paper we study the solvability of a class of fully-coupled forward–backward stochastic partial differential equations (FBSPDEs) with non-monotonic coefficients. These FBSPDEs cannot be put into the framework of stochastic evolution equations in general, and the usual decoupling methods for the Markovian forward–backward SDEs are difficult to apply. We prove the well-posedness of such FBSPDEs by using the method of continuation. Contrary to the common belief, we show that the usual monotonicity assumption can be removed by a change of the diffusion term.


2020 ◽  
Vol 5 (1) ◽  
pp. 249-254
Author(s):  
Fatma Bulut Korkmaz ◽  
Mehmet Bektaandş

AbstractIn our study, we give the associated evolution equations for curvature and torsion as a system of partial differential equations. In addition, we study second binormal motions of inextensible curves in 4-dimensional Galilean space.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. S. Motsa

This paper presents a new application of the homotopy analysis method (HAM) for solving evolution equations described in terms of nonlinear partial differential equations (PDEs). The new approach, termed bivariate spectral homotopy analysis method (BISHAM), is based on the use of bivariate Lagrange interpolation in the so-called rule of solution expression of the HAM algorithm. The applicability of the new approach has been demonstrated by application on several examples of nonlinear evolution PDEs, namely, Fisher’s, Burgers-Fisher’s, Burger-Huxley’s, and Fitzhugh-Nagumo’s equations. Comparison with known exact results from literature has been used to confirm accuracy and effectiveness of the proposed method.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750041 ◽  
Author(s):  
V. M. Magagula ◽  
S. S. Motsa ◽  
P. Sibanda

In this paper, we present a new general approach for solving nonlinear evolution partial differential equations. The novelty of the approach is in the combination of spectral collocation and Lagrange interpolation polynomials with Legendre–Gauss–Lobatto grid points to descritize and solve equations in piece-wise defined intervals. The method is used to solve several nonlinear evolution partial differential equations, namely, the modified KdV–Burgers equation, modified KdV equation, Fisher’s equation, Burgers–Fisher equation, Burgers–Huxley equation and the Fitzhugh–Nagumo equation. The results are compared with known analytic solutions to confirm accuracy, convergence and to get a general understanding of the performance of the method. In all the numerical experiments, we report a high degree of accuracy of the numerical solutions. Strategies for implementing various boundary conditions are discussed.


Sign in / Sign up

Export Citation Format

Share Document